

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	bg 1.8 documentation

Welcome to bg’s documentation!

BG is a python based package that provides a comprehensive implementation of comparative genomics combinatorial
object named breakpoint graph [1] [http://genome.cshlp.org/content/early/2009/02/12/gr.082784.108.short].

Code is written with the philosophy of TDD and requires Python v3.3+ for correct work.

The package is created and maintained by Sergey Aganezov, Ph.D. Candidate at the Department of Mathematics & Computational Biology institute (CBI),
George Washington University (GWU), Washington, DC, USA.

Author is very grateful for thoughtful and dedicated leadership of Dr. Max A. Alekseyev [http://home.gwu.edu/~maxal/],
Associate Professor at Department of Mathematics & CBI, GWU.

Installation

Package is distributed by pypi [https://pypi.python.org/pypi] online repository of software for the Python programming language.

To install execute the following simple command

>>> pip install bg

Contents:

	Contributing
	Test Driven Development

	Issues reporting

	Code incorporation

	API documentation
	grimm.py

	breakpoint_graph.py

	tree.py

	kbreak.py

	multicolor.py

	edge.py

	vertices.py

	genome.py

	distances.py

	util.py

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	bg 1.8 documentation

Contributing

This page will show the basic principals, that are used during the development of this package.

The project is hosted [https://github.com/sergey-aganezov-jr/bg] on the github [https://github.com/].

Test Driven Development

Whole project is written with a test-driven development paradigm.
This is especially important, since this project provides an implementation of a complex combinatorial object, which must be reliable in use during research projects.

Project uses unittest framework [https://docs.python.org/3/library/unittest.html] for implementing TDD paradigm.

Issues reporting

Any found bugs, miss-citations, mistakes in documentation, questions, etc. shall be reported to the issue-tracking [https://github.com/sergey-aganezov-jr/bg/issues]
system, powered by github.

Code incorporation

There are several rules for new code to be incorporated into this library:

	All code has to written using the Sphinx [https://pythonhosted.org/an_example_pypi_project/sphinx.html] style

	All code must be covered by tests

	All algorithms and data structures code must have proper citations

 Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	bg 1.8 documentation

API documentation

grimm.py

	
class bg.grimm.GRIMMReader[source]

	Bases: object

Class providing a staticmethod based implementation of reading GRIMM formatted data file-like object and obtain a bg.breakpoint_graph.BreakpointGraph instance.

There are no private methods implementations for all public methods so inheritance shall be performed with caution.
For now GRIMM format is a bit simplified and straightened from the version provided at http://grimm.ucsd.edu/GRIMM/grimm_instr.html

Supported GRIMM format:

	all strings are stripped from both sides for tabs, spaces, etc. Below when said “string”, stripped string is assumed

	genome declaration is specified on a string that starts with >

	genome name is everything, that follows > sign

	all input data before the next genome declaration (or EOF) will be attributed to this genome by its genome name

	a data string (containing information about gene orders) is a string that is not a genome declaration, comment, empty string

	every new genomic fragments (chromosome/scaffold/contig/etc) must be specified on a new string

	every data string must contain a $ (for linear case) or @ (for circular case) gene order terminator, that indicates the end of current genomic fragment

	everything after the gene order terminator is ignored

	if no gene order before gene order terminator is specified an error would be raised

	
	gene order:

	
	gene order is a sequence of space separated block name strings with optional orientation declaration

	
	block can be described by a regular expression ^((-|\+).+$)|([^-\+]+$) and viewed as follows:

	if the sign (+ or -) is present as a first character, then it must be followed by a nonempty block name string
if sign is not present, everything is assumed to be a block name, and + orientation is assigned to it automatically

	comment string starts with # sign and is ignored during data processing

Main operations:

	GRIMMReader.is_genome_declaration_string(): checks if supplied string after stripping corresponds to genome declaration

	GRIMMReader.is_comment_string(): checks if supplied string after stripping corresponds to comment and shall thus be ignored in data processing

	GRIMMReader.parse_genome_declaration_string(): parses a string marked as genome declaration and returns a corresponding genome name

	GRIMMReader.parse_data_string(): parses a string assumed to contain gene order data, retrieving information about fragment type, gene order, blocks names and their orientation

	GRIMMReader.get_edges_from_parsed_data(): taking into account fragment type (circular|linear) and retrieved gene order information translates adjacencies between blocks into edges for addition to the bg.breakpoint_graph.BreakpointGraph

	GRIMMReader.get_breakpoint_graph(): taking a file-like object transforms supplied gene order data into the language of BreakpointGraph

	
static _GRIMMReader__assign_vertex_pair(block)

	Assigns usual BreakpointGraph type vertices to supplied block.

Vertices are labeled as “block_name” + “h” and “block_name” + “t” according to blocks orientation.

	Parameters:	block ((str, str)) – information about a genomic block to create a pair of vertices for in a format of (+ | -, block_name)

	Returns:	a pair of vertices labeled according to supplied blocks name (respecting blocks orientation)

	Return type:	(str, str)

	
static get_breakpoint_graph(stream, merge_edges=True)[source]

	Taking a file-like object transforms supplied gene order data into the language of

	Parameters:	
	merge_edges (bool) – a flag that indicates if parallel edges in produced breakpoint graph shall be merged or not

	stream (iterable ver str) – any iterable object where each iteration produces a str object

	Returns:	an instance of a BreakpointGraph that contains information about adjacencies in genome specified in GRIMM formatted input

	Return type:	bg.breakpoint_graph.BreakpointGraph

	
static get_edges_from_parsed_data(parsed_data)[source]

	Taking into account fragment type (circular|linear) and retrieved gene order information translates adjacencies between blocks into edges for addition to the bg.breakpoint_graph.BreakpointGraph

In case supplied fragment is linear ($) special artificial vertices (with __infinity suffix) are introduced to denote fragment extremities

	Parameters:	parsed_data (tuple(str, list((str, str), ...))) – ($ | @, [(+ | -, block_name),...]) formatted data about fragment type and ordered list of oriented blocks

	Returns:	a list of vertices pairs that would correspond to edges in bg.breakpoint_graph.BreakpointGraph

	Return type:	list((str, str), ...)

	
static is_comment_string(data_string)[source]

	Checks if supplied string after stripping corresponds to comment and shall thus be ignored in data processing

	Parameters:	data_string (str) – a string to check if it is a pure comment string

	Returns:	a flag indicating if supplied string is a pure comment string

	Return type:	Boolean

	
static is_genome_declaration_string(data_string)[source]

	Checks if supplied string after stripping corresponds to genome declaration

	Parameters:	data_string (str) – a string to check genome name declaration in

	Returns:	a flag indicating if supplied string corresponds to genome name declaration

	Return type:	Boolean

	
static parse_data_string(data_string)[source]

	Parses a string assumed to contain gene order data, retrieving information about fragment type, gene order, blocks names and their orientation

First checks if gene order termination signs are present.
Selects the earliest one.
Checks that information preceding is not empty and contains gene order.
Generates results structure by retrieving information about fragment type, blocks names and orientations.

NOTE: comment signs do not work in data strings. Rather use the fact that after first gene order termination sign everything is ignored for processing

	Parameters:	data_string (str) – a string to retrieve gene order information from

	Returns:	($ | @, [(+ | -, block_name),...]) formatted structure corresponding to gene order in supplied data string and containing fragments type

	Return type:	tuple(str, list((str, str), ...))

	
static parse_genome_declaration_string(data_string)[source]

	Parses a string marked as genome declaration and returns a corresponding bg.genome.BGGenome

	Parameters:	data_string (str) – a string to retrieve genome name from

	Returns:	genome name from supplied genome declaration string

	Return type:	bg.genome.BGGenome

breakpoint_graph.py

	
class bg.breakpoint_graph.BreakpointGraph(graph=None)[source]

	Bases: object

Class providing implementation of breakpoint graph data structure and most utilized operations on it.

BreakpointGraph anticipates to work with bg.vertex.BGVertex, bg.edge.BGEdge and bg.multicolor.Multicolor classes instances, but is not limited to them. Extreme caution has to be assumed when working with non-expected classes.

The engine of graph information storage, low-level algorithms implementation is powered by NetworkX package MultiGraph data structure. This class provides a smart wrapping around it to perform most useful, from combinatorial bioinformatics stand point, operations and manipulations.

Class carries following attributes carrying information about graphs structure:

	BreakpointGraph.bg: instance of NetworkX MultiGraph class

Main operations:

	BreakpointGraph.add_bgedge(): adds an instance of bg.edge.BGEdge to the current BreakpointGraph

	BreakpointGraph.add_edge(): adds a new bg.edge.BGEdge, constructed from a pair of supplied vertices instances and bg.multicolor.Multicolor object, to the current BreakpointGraph

	BreakpointGraph.get_vertex_by_name(): returns a bg.vertex.BGVertex instance by provided name argument

	BreakpointGraph.get_edge_by_two_vertices(): returns a first edge (order is determined by key NetworkX MultiGraph edge attribute) between two supplied bg.vertex.BGVertex

	BreakpointGraph.get_edges_by_vertex(): returns a generator yielding bg.edge.BGEdge

	BreakpointGraph.edges_between_two_vertices(): returns a generator yielding bg.edge.BGEdge between two supplied vertices

	BreakpointGraph.connected_components_subgraphs(): returns a generator of BreakpointGraph object, that represent connected components of a current BreakpointGraph object, deep copying(by default) all information of current BreakpointGraph

	BreakpointGraph.delete_edge(): deletes and edge from perspective of multi-color substitution of supplied vertices

	BreakpointGraph.delete_bgedge(): deletes a supplied bg.edge.BGEdge instance from perspective of substituting multi-colors.

	BreakpointGraph.split_edge(): deletes a supplied bg.multicolor.Multicolor instance in identifies edge from two supplied vertices.

	BreakpointGraph.split_bgedge(): splits a bg.edge.BGEdge with respect to provided guidance

	BreakpointGraph.split_all_edges_between_two_vertices(): splits all edges between two supplied vertives with respect to provided guidance.

	BreakpointGraph.split_all_edges(): splits all edge in BreakpointGraph with respect to provided guidance.

	BreakpointGraph.delete_all_edges_between_two_vertices(): deletes all edges between two given vertices, by plain deleting them from MultiGraph underling structure.

	BreakpointGraph.merge_all_edges_between_two_vertices(): merges all edge between two given vertices creating a single edge containing information about multi-colors in respective edges.

	BreakpointGraph.merge_all_edges(): merges all edges in current BreakpointGraph.

	BreakpointGraph.merge(): merges two BreakpointGraph instances with respect to vertices, edges, and multicolors.

	BreakpointGraph.update(): updates information in current BreakpointGraph instance by adding new bg.edge.BGEdge instances form supplied BreakpointGraph.

	
_BreakpointGraph__add_bgedge(bgedge, merge=True)

	Adds supplied bg.edge.BGEdge object to current instance of BreakpointGraph.

Checks that vertices in supplied bg.edge.BGEdge instance actually are present in current BreakpointGraph if merge option of provided. Otherwise a new edge is added to the current BreakpointGraph.

	Parameters:	
	bgedge (bg.edge.BGEdge) – instance of bg.edge.BGEdge infromation form which is to be added to current BreakpointGraph

	merge (Boolean) – a flag to merge supplied information from multi-color perspective into a first existing edge between two supplied vertices

	Returns:	None, performs inplace changes

	
_BreakpointGraph__delete_all_bgedges_between_two_vertices(vertex1, vertex2)

	Deletes all edges between two supplied vertices

	Parameters:	
	vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first out of two vertices edges between which are to be deleted

	vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a second out of two vertices edges between which are to be deleted

	Returns:	None, performs inplace changes

	
_BreakpointGraph__delete_bgedge(bgedge, key=None, keep_vertices=False)

	Deletes a supplied bg.edge.BGEdge from a perspective of multi-color substitution. If unique identifier key is not provided, most similar (from perspective of bg.multicolor.Multicolor.similarity_score() result) edge between respective vertices is chosen for change.

If no unique identifier for edge to be changed is specified, edge to be updated is determined by iterating over all edges between vertices in supplied bg.edge.BGEdge instance and the edge with most similarity score to supplied one is chosen.
Once the edge to be substituted from is determined, substitution if performed form a perspective of bg.multicolor.Multicolor substitution.
If after substitution the remaining multicolor of respective edge is empty, such edge is deleted form a perspective of MultiGraph edge deletion.

	Parameters:	
	bgedge (bg.edge.BGEdge) – an edge to be deleted from a perspective of multi-color substitution

	key – unique identifier of existing edges in current BreakpointGraph instance to be changed

	Type:	any python object. int is expected.

	Returns:	None, performed inplace changes.

	
_BreakpointGraph__edges(nbunch=None, keys=False)

	Iterates over edges in current BreakpointGraph instance.

Returns a generator over the edges in current BreakpointGraph instance producing instances of bg.edge.BGEdge instances wrapping around information in underlying MultiGraph object.

	Parameters:	
	nbunch – a vertex to iterate over edges outgoing from, if not provided,iteration over all edges is performed.

	keys (Boolean) – a flag to indicate if information about unique edge’s ids has to be returned alongside with edge

	Returns:	generator over edges in current BreakpointGraph

	Return type:	generator

	
_BreakpointGraph__edges_between_two_vertices(vertex1, vertex2, keys=False)

	Iterates over edges between two supplied vertices in current BreakpointGraph

Checks that both supplied vertices are present in current breakpoint graph and then yield all edges that are located between two supplied vertices.
If keys option is specified, then not just edges are yielded, but rather pairs (edge, edge_id) are yielded

	Parameters:	
	vertex1 (any hashable object, bg.vertex.BGVertex is expected) – a first vertex out of two, edges of interest are incident to

	vertex2 (any hashable object, bg.vertex.BGVertex is expected) – a second vertex out of two, edges of interest are incident to

	keys (Boolean) – a flag to indicate if information about unique edge’s ids has to be returned alongside with edge

	Returns:	generator over edges (tuples edge, edge_id if keys specified) between two supplied vertices in current BreakpointGraph wrapped in bg.vertex.BGVertex

	Return type:	generator

	
_BreakpointGraph__get_edge_by_two_vertices(vertex1, vertex2, key=None)

	Returns an instance of bg.edge.BBGEdge edge between to supplied vertices (if key is supplied, returns a bg.edge.BBGEdge instance about specified edge).

Checks that both specified vertices are in current BreakpointGraph and then depending on key argument, creates a new bg.edge.BBGEdge instance and incorporates respective multi-color information into it.

	Parameters:	
	vertex1 (any hashable object) – first vertex instance out of two in current BreakpointGraph

	vertex2 (any hashable object) – second vertex instance out of two in current BreakpointGraph

	key (any python object. None or int is expected) – unique identifier of edge of interested to be retrieved from current BreakpointGraph

	Returns:	edge between two specified edges respecting a key argument.

	Return type:	bg.edge.BGEdge

	
_BreakpointGraph__get_edges_by_vertex(vertex, keys=False)

	Iterates over edges that are incident to supplied vertex argument in current BreakpointGraph

Checks that the supplied vertex argument exists in underlying MultiGraph object as a vertex, then iterates over all edges that are incident to it. Wraps each yielded object into bg.edge.BGEdge object.

	Parameters:	
	vertex (any hashable object. bg.vertex.BGVertex object is expected.) – a vertex object in current BreakpointGraph object

	keys (Boolean) – a flag to indicate if information about unique edge’s ids has to be returned alongside with edge

	Returns:	generator over edges (tuples edge, edge_id if keys specified) in current BreakpointGraph wrapped in bg.vertex.BGEVertex

	Return type:	generator

	
_BreakpointGraph__get_vertex_by_name(vertex_name)

	Obtains a vertex object by supplied label

Returns a bg.vertex.BGVertex or its subclass instance

	Parameters:	vertex_name (any hashable python object. str expected.) – a vertex label it is identified by.

	Returns:	vertex with supplied label if present in current BreakpointGraph, None otherwise

	
_BreakpointGraph__merge_all_bgedges_between_two_vertices(vertex1, vertex2)

	Merges all edge between two supplied vertices into a single edge from a perspective of multi-color merging.

	Parameters:	
	vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first out of two vertices edges between which are to be merged together

	vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a second out of two vertices edges between which are to be merged together

	Returns:	None, performs inplace changes

	
_BreakpointGraph__split_all_edges_between_two_vertices(vertex1, vertex2, guidance=None, sorted_guidance=False, account_for_colors_multiplicity_in_guidance=True)

	Splits all edges between two supplied vertices in current BreakpointGraph instance with respect to the provided guidance.

Iterates over all edges between two supplied vertices and splits each one of them with respect to the guidance.

	Parameters:	
	vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first out of two vertices edges between which are to be split

	vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a second out of two vertices edges between which are to be split

	guidance (iterable where each entry is iterable with colors entries) – a guidance for underlying bg.multicolor.Multicolor objects to be split

	Returns:	None, performs inplace changes

	
_BreakpointGraph__split_bgedge(bgedge, guidance=None, sorted_guidance=False, account_for_colors_multiplicity_in_guidance=True, key=None)

	Splits a bg.edge.BGEdge in current BreakpointGraph most similar to supplied one (if no unique identifier key is provided) with respect to supplied guidance.

If no unique identifier for edge to be changed is specified, edge to be split is determined by iterating over all edges between vertices in supplied bg.edge.BGEdge instance and the edge with most similarity score to supplied one is chosen.
Once the edge to be split is determined, split if performed form a perspective of bg.multicolor.Multicolor split.
The originally detected edge is deleted, and new edges containing information about multi-colors after splitting, are added to the current BreakpointGraph.

	Parameters:	
	bgedge (bg.edge.BGEdge) – an edge to find most “similar to” among existing edges for a split

	guidance (iterable where each entry is iterable with colors entries) – a guidance for underlying bg.multicolor.Multicolor object to be split

	duplication_splitting (Boolean) – flag (not currently implemented) for a splitting of color-based splitting to take into account multiplicity of respective colors

	key (any python object. int is expected) – unique identifier of edge to be split

	Returns:	None, performs inplace changes

	
_BreakpointGraph__update(breakpoint_graph, merge_edges=False)

	Updates a current :class`BreakpointGraph` object with information from a supplied :class`BreakpointGraph` instance.

Depending of a merge_edges flag, while updating of a current :class`BreakpointGraph` object is occuring, edges between similar vertices can be merged to already existing ones.

	Parameters:	
	breakpoint_graph (:class`BreakpointGraph`) – a breakpoint graph to extract information from, which will be then added to the current

	merge_edges (Boolean) – flag to indicate if edges to be added to current :class`BreakpointGraph` object are to be merged to already existing ones

	Returns:	None, performs inplace changes

	
__init__(graph=None)[source]

	Initialization of a BreakpointGraph object.

	Parameters:	graph (instance of NetworkX MultiGraph is expected.) – is supplied, BreakpointGraph is initialized with supplied or brand new (empty) instance of NetworkX MultiGraph.

	
add_bgedge(bgedge, merge=True)[source]

	Adds supplied bg.edge.BGEdge object to current instance of BreakpointGraph.

Proxies a call to BreakpointGraph._BreakpointGraph__add_bgedge() method.

	Parameters:	
	bgedge (bg.edge.BGEdge) – instance of bg.edge.BGEdge infromation form which is to be added to current BreakpointGraph

	merge (Boolean) – a flag to merge supplied information from multi-color perspective into a first existing edge between two supplied vertices

	Returns:	None, performs inplace changes

	
add_edge(vertex1, vertex2, multicolor, merge=True, data=None)[source]

	Creates a new bg.edge.BGEdge object from supplied information and adds it to current instance of BreakpointGraph.

Proxies a call to BreakpointGraph._BreakpointGraph__add_bgedge() method.

	Parameters:	
	vertex1 (any hashable object) – first vertex instance out of two in current BreakpointGraph

	vertex2 (any hashable object) – second vertex instance out of two in current BreakpointGraph

	multicolor (bg.multicolor.Multicolor) – an information about multi-colors of added edge

	merge (Boolean) – a flag to merge supplied information from multi-color perspective into a first existing edge between two supplied vertices

	Returns:	None, performs inplace changes

	
apply_kbreak(kbreak, merge=True)[source]

	Check validity of supplied k-break and then applies it to current BreakpointGraph

Only bg.kbreak.KBreak (or its heirs) instances are allowed as kbreak argument.
KBreak must correspond to the valid kbreak and, since some changes to its internals might have been done since its creation, a validity check in terms of starting/resulting edges is performed.
All vertices in supplied KBreak (except for paired infinity vertices) must be present in current BreakpointGraph.
For all supplied pairs of vertices (except for paired infinity vertices), there must be edges between such pairs of vertices, at least one of which must contain a multicolor matching a multicolor of supplied kbreak.

Edges of specified in kbreak multicolor are deleted between supplied pairs of vertices in kbreak.start_edges (except for paired infinity vertices).
New edges of specified in kbreak multicolor are added between all pairs of vertices in kbreak.result_edges (except for paired infinity vertices).
If after the kbreak application there is an infinity vertex, that now has no edges incident to it, it is deleted form the current BreakpointGraph.

	Parameters:	
	kbreak (bg.kbreak.KBreak) – a k-break to be applied to current BreakpointGraph

	merge (Boolean) – a flag to indicate on how edges, that will be created by a k-break, will be added to current BreakpointGraph

	Returns:	nothing, performs inplace changes

	Return type:	None

	Raises:	ValueError, TypeError

	
connected_components_subgraphs(copy=True)[source]

	Iterates over connected components in current BreakpointGraph object, and yields new instances of BreakpointGraph with respective information deep-copied by default (week reference is possible of specified in method call).

	Parameters:	copy (Boolean) – a flag to signal if graph information has to be deep copied while producing new BreakpointGraph instances, of just reference to respective data has to be made.

	Returns:	generator over connected components in current BreakpointGraph wrapping respective connected components into new BreakpointGraph objects.

	Return type:	generator

	
delete_all_edges_between_two_vertices(vertex1, vertex2)[source]

	Deletes all edges between two supplied vertices

Proxies a call to BreakpointGraph._BreakpointGraph__delete_all_bgedges_between_two_vertices() method.

	Parameters:	
	vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first out of two vertices edges between which are to be deleted

	vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a second out of two vertices edges between which are to be deleted

	Returns:	None, performs inplace changes

	
delete_bgedge(bgedge, key=None)[source]

	Deletes a supplied bg.edge.BGEdge from a perspective of multi-color substitution. If unique identifier key is not provided, most similar (from perspective of bg.multicolor.Multicolor.similarity_score() result) edge between respective vertices is chosen for change.

Proxies a call to \(BreakpointGraph._BreakpointGraph__delete_bgedge\) method.

	Parameters:	
	bgedge (bg.edge.BGEdge) – an edge to be deleted from a perspective of multi-color substitution

	key – unique identifier of existing edges in current BreakpointGraph instance to be changed

	Type:	any python object. int is expected.

	Returns:	None, performed inplace changes.

	
delete_edge(vertex1, vertex2, multicolor, key=None)[source]

	Creates a new bg.edge.BGEdge instance from supplied information and deletes it from a perspective of multi-color substitution. If unique identifier key is not provided, most similar (from perspective of bg.multicolor.Multicolor.similarity_score() result) edge between respective vertices is chosen for change.

Proxies a call to \(BreakpointGraph._BreakpointGraph__delete_bgedge\) method.

	Parameters:	
	vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first vertex out of two the edge to be deleted is incident to

	vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a second vertex out of two the edge to be deleted is incident to

	multicolor (bg.multicolor.Multicolor) – a multi-color to find most suitable edge to be deleted

	key – unique identifier of existing edges in current BreakpointGraph instance to be changed

	Type:	any python object. int is expected.

	Returns:	None, performed inplace changes.

	
edges(nbunch=None, keys=False)[source]

	Iterates over edges in current BreakpointGraph instance.

Proxies a call to BreakpointGraph._BreakpointGraph__edges().

	Parameters:	
	nbunch – a vertex to iterate over edges outgoing from, if not provided,iteration over all edges is performed.

	keys (Boolean) – a flag to indicate if information about unique edge’s ids has to be returned alongside with edge

	Returns:	generator over edges in current BreakpointGraph

	Return type:	generator

	
edges_between_two_vertices(vertex1, vertex2, keys=False)[source]

	Iterates over edges between two supplied vertices in current BreakpointGraph

Proxies a call to Breakpoint._Breakpoint__edges_between_two_vertices() method.

	Parameters:	
	vertex1 (any hashable object, bg.vertex.BGVertex is expected) – a first vertex out of two, edges of interest are incident to

	vertex2 (any hashable object, bg.vertex.BGVertex is expected) – a second vertex out of two, edges of interest are incident to

	keys (Boolean) – a flag to indicate if information about unique edge’s ids has to be returned alongside with edge

	Returns:	generator over edges (tuples edge, edge_id if keys specified) between two supplied vertices in current BreakpointGraph wrapped in bg.vertex.BGVertex

	Return type:	generator

	
classmethod from_json(data, genomes_data=None, genomes_deserialization_required=True, merge=False)[source]

	A JSON deserialization operation, that recovers a breakpoint graph from its JSON representation

as information about genomes, that are encoded in breakpoint graph might be available somewhere else, but not the
json object, there is an option to provide it and omit encoding information about genomes.

	
get_edge_by_two_vertices(vertex1, vertex2, key=None)[source]

	Returns an instance of bg.edge.BBGEdge edge between to supplied vertices (if key is supplied, returns a bg.edge.BBGEdge instance about specified edge).

Proxies a call to BreakpointGraph._BreakpointGraph__get_edge_by_two_vertices().

	Parameters:	
	vertex1 (any hashable object) – first vertex instance out of two in current BreakpointGraph

	vertex2 (any hashable object) – second vertex instance out of two in current BreakpointGraph

	key (any python object. None or int is expected) – unique identifier of edge of interested to be retrieved from current BreakpointGraph

	Returns:	edge between two specified edges respecting a key argument.

	Return type:	bg.edge.BGEdge

	
get_edges_by_vertex(vertex, keys=False)[source]

	Iterates over edges that are incident to supplied vertex argument in current BreakpointGraph

Proxies a call to Breakpoint._Breakpoint__get_edges_by_vertex() method.

	Parameters:	
	vertex (any hashable object. bg.vertex.BGVertex object is expected.) – a vertex object in current BreakpointGraph object

	keys (Boolean) – a flag to indicate if information about unique edge’s ids has to be returned alongside with edge

	Returns:	generator over edges (tuples edge, edge_id if keys specified) in current BreakpointGraph wrapped in bg.vertex.BGEVertex

	Return type:	generator

	
get_vertex_by_name(vertex_name)[source]

	Obtains a vertex object by supplied label

Proxies a call to BreakpointGraph._BreakpointGraph__get_vertex_by_name().

	Parameters:	vertex_name (any hashable python object. str expected.) – a vertex label it is identified by.

	Returns:	vertex with supplied label if present in current BreakpointGraph, None otherwise

	Return type:	bg.vertices.BGVertex or None

	
classmethod merge(breakpoint_graph1, breakpoint_graph2, merge_edges=False)[source]

	Merges two given instances of :class`BreakpointGraph` into a new one, that gather all available information from both supplied objects.

Depending of a merge_edges flag, while merging of two dat structures is occurring, edges between similar vertices can be merged during the creation of a result :class`BreakpointGraph` obejct.

Accounts for subclassing.

	Parameters:	
	breakpoint_graph1 (:class`BreakpointGraph`) – a first out of two :class`BreakpointGraph` instances to gather information from

	breakpoint_graph2 (:class`BreakpointGraph`) – a second out of two :class`BreakpointGraph` instances to gather information from

	merge_edges (Boolean) – flag to indicate if edges in a new merged :class`BreakpointGraph` object has to be merged between same vertices, or if splitting from supplied graphs shall be preserved.

	Returns:	a new breakpoint graph object that contains all information gathered from both supplied breakpoint graphs

	Return type:	:class`BreakpointGraph`

	
merge_all_edges()[source]

	Merges all edges in a current :class`BreakpointGraph` instance between same pairs of vertices into a single edge from a perspective of multi-color merging.

Iterates over all possible pairs of vertices in current BreakpointGraph and merges all edges between respective pairs.

	Returns:	None, performs inplace changes

	
merge_all_edges_between_two_vertices(vertex1, vertex2)[source]

	Merges all edge between two supplied vertices into a single edge from a perspective of multi-color merging.

Proxies a call to BreakpointGraph._BreakpointGraph__merge_all_bgedges_between_two_vertices()

	Parameters:	
	vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first out of two vertices edges between which are to be merged together

	vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a second out of two vertices edges between which are to be merged together

	Returns:	None, performs inplace changes

	
nodes()[source]

	Iterates over nodes in current BreakpointGraph instance.

	Returns:	generator over nodes (vertices) in current BreakpointGraph instance.

	Return type:	generator

	
split_all_edges(guidance=None, sorted_guidance=False, account_for_colors_multiplicity_in_guidance=True)[source]

	Splits all edge in current BreakpointGraph instance with respect to the provided guidance.

Iterate over all possible distinct pairs of vertices in current BreakpointGraph instance and splits all edges between such pairs with respect to provided guidance.

	Parameters:	guidance (iterable where each entry is iterable with colors entries) – a guidance for underlying bg.multicolor.Multicolor objects to be split

	Returns:	None, performs inplace changes

	
split_all_edges_between_two_vertices(vertex1, vertex2, guidance=None, sorted_guidance=False, account_for_colors_multiplicity_in_guidance=True)[source]

	Splits all edges between two supplied vertices in current BreakpointGraph instance with respect to the provided guidance.

Proxies a call to BreakpointGraph._BreakpointGraph__split_all_edges_between_two_vertices() method.

	Parameters:	
	vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first out of two vertices edges between which are to be split

	vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a second out of two vertices edges between which are to be split

	guidance (iterable where each entry is iterable with colors entries) – a guidance for underlying bg.multicolor.Multicolor objects to be split

	Returns:	None, performs inplace changes

	
split_bgedge(bgedge, guidance=None, sorted_guidance=False, account_for_colors_multiplicity_in_guidance=True, key=None)[source]

	Splits a bg.edge.BGEdge in current BreakpointGraph most similar to supplied one (if no unique identifier key is provided) with respect to supplied guidance.

Proxies a call to BreakpointGraph._BreakpointGraph__split_bgedge() method.

	Parameters:	
	bgedge (bg.edge.BGEdge) – an edge to find most “similar to” among existing edges for a split

	guidance (iterable where each entry is iterable with colors entries) – a guidance for underlying bg.multicolor.Multicolor object to be split

	duplication_splitting (Boolean) – flag (not currently implemented) for a splitting of color-based splitting to take into account multiplicity of respective colors

	key (any python object. int is expected) – unique identifier of edge to be split

	Returns:	None, performs inplace changes

	
split_edge(vertex1, vertex2, multicolor, guidance=None, sorted_guidance=False, account_for_colors_multiplicity_in_guidance=True, key=None)[source]

	Splits an edge in current BreakpointGraph most similar to supplied data (if no unique identifier key is provided) with respect to supplied guidance.

Proxies a call to BreakpointGraph._BreakpointGraph__split_bgedge() method.

	Parameters:	
	vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first vertex out of two the edge to be split is incident to

	vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a second vertex out of two the edge to be split is incident to

	multicolor (bg.multicolor.Multicolor) – a multi-color to find most suitable edge to be split

	duplication_splitting (Boolean) – flag (not currently implemented) for a splitting of color-based splitting to take into account multiplicity of respective colors

	key (any python object. int is expected) – unique identifier of edge to be split

	Returns:	None, performs inplace changes

	
to_json(schema_info=True)[source]

	JSON serialization method that account for all information-wise important part of breakpoint graph

	
update(breakpoint_graph, merge_edges=False)[source]

	Updates a current :class`BreakpointGraph` object with information from a supplied :class`BreakpointGraph` instance.

Proxoes a call to BreakpointGraph._BreakpointGraph__update() method.

	Parameters:	
	breakpoint_graph (BreakpointGraph) – a breakpoint graph to extract information from, which will be then added to the current

	merge_edges (Boolean) – flag to indicate if edges to be added to current :class`BreakpointGraph` object are to be merged to already existing ones

	Returns:	None, performs inplace changes

tree.py

	
class bg.tree.BGTree(newick=None, newick_format=1, dist=1, leaf_wrapper=<class 'bg.genome.BGGenome'>)[source]

	Bases: object

Class that is designed to store information about phylogenetic information and relations between multiple genomes

Class utilizes a ete3.Tree object as an internal storage
This tree can store information about:

	edge lengths

	tree topology

	
_BGTree__get_node_by_name(name)

	Returns a first TreeNode object, which name matches the specified argument

	Raises:	ValueError (if no node with specified name is present in the tree)

	
_BGTree__get_v_tree_consistent_leaf_based_hashable_multicolors()

	Internally used method, that recalculates VTree-consistent sets of leaves in the current tree

	
_BGTree__has_edge(node1_name, node2_name, account_for_direction=True)

	Returns a boolean flag, telling if a tree has an edge with two nodes, specified by their names as arguments

If a account_for_direction is specified as True, the order of specified node names has to relate to parent - child relation,
otherwise both possibilities are checked

	
_BGTree__has_node(name)

	Check is the current Tree has a node, matching by name to the specified argument

	
_BGTree__update_consistent_multicolors()

	Internally used method, that recalculates T-consistent / VT-consistent multicolors for current tree topology

	
_BGTree__vertex_is_leaf(node_name)

	Checks if a node specified by its name as an argument is a leaf in the current Tree

	Raises:	ValueError (if no node with specified name is present in the tree)

	
add_edge(node1_name, node2_name, edge_length=1)[source]

	Adds a new edge to the current tree with specified characteristics

Forbids addition of an edge, if a parent node is not present
Forbids addition of an edge, if a child node already exists

	Parameters:	
	node1_name – name of the parent node, to which an edge shall be added

	node2_name – name of newly added child node

	edge_length – a length of specified edge

	Returns:	nothing, inplace changes

	Raises:	ValueError (if parent node IS NOT present in the tree, or child node IS already present in the tree)

	
append(node_name, tree, copy=False)[source]

	Append a specified tree (represented by a root TreeNode element) to the node, specified by its name

	Parameters:	copy (Boolean) – a flag denoting if the appended tree has to be added as is, or is the deepcopy of it has to be used

	Raises:	ValueError (if no node with a specified name, to which the specified tree has to be appended, is present in the current tree)

	
bgedge_is_tree_consistent(bgedge)[source]

	Checks is supplied BGEdge (from the perspective of its multicolor is T-consistent)

	
bgedge_is_vtree_consistent(bgedge)[source]

	Checks is supplied BGEdge (from the perspective of its multicolor is VT-consistent)

	
edges()[source]

	

	Returns:	iterator over edges in current tree.

	Return type:	iterator

	
get_distance(node1_name, node2_name)[source]

	Returns a length of an edge / path, if exists, from the current tree

	Parameters:	
	node1_name – a first node name in current tree

	node2_name – a second node name in current tree

	Returns:	a length of specified by a pair of vertices edge / path

	Return type:	Number

	Raises:	ValueError, if requested a length of an edge, that is not present in current tree

	
get_node_by_name(name)[source]

	Proxies the call to the __get_node_by_name method

	
get_tree_consistent_multicolors()[source]

	Returns a copy of the list of T-consistent multicolors from current tree

	
get_vtree_consistent_multicolors()[source]

	Returns a copy of the list of VT-consistent multicolors from current tree

	
has_edge(node1_name, node2_name, account_for_direction=True)[source]

	Proxies a call to the __has_edge method

	
has_node(name)[source]

	Proxies a call to __has_node method

	
multicolor_is_tree_consistent(multicolor)[source]

	Checks is supplied multicolor is T-consistent

	
multicolor_is_vtree_consistent(multicolor)[source]

	Checks is supplied multicolor is VT-consistent

	
nodes()[source]

	Proxies iteration to the underlying Tree.iter_descendants iterator, but first yielding a root element

	Returns:	iterator over all descendants of a root, starting with a root, in current tree

	Return type:	iterator

	
root

	A property based call for the root pointer in current tree

	
tree_consistent_multicolors

	Property based getter, that checks for consistency in terms of precomputed T-consistent multicolors,
recomputes all consistent multicolors if tree topology has changed and returns internally stored list of T-consistent multicolors

	
tree_consistent_multicolors_set

	Property based getter, that checks for consistency in terms of precomputed T-consistent multicolors,
recomputes all consistent multicolors if tree topology has changed and returns internally stored set of hashable
representation of T-consistent multicolors

	
vtree_consistent_multicolors

	Property based getter, that checks for consistency in terms of precomputed VT-consistent multicolors,
recomputes all consistent multicolors if tree topology has changed and returns internally stored list of VT-consistent
multicolors

	
vtree_consistent_multicolors_set

	Property based getter, that checks for consistency in terms of precomputed VT-consistent multicolors,
recomputes all consistent multicolors if tree topology has changed and returns internally stored set of hashable
representation of VT-consistent multicolors

kbreak.py

	
class bg.kbreak.KBreak(start_edges, result_edges, multicolor, data=None)[source]

	Bases: object

A generic object that can represent any k-break (k>= 2)

A notion of k-break arises from the bioinformatics combinatorial object BreakpointGraph and is first mentioned in http://home.gwu.edu/~maxal/ap_tcs08.pdf
A generic k-break operates on k specified edges of spisific multicolor and replaces them with another set of k edges with the same multicolor on the same set of vertices in way, that the degree of vertices is kept intact.

Initialization of the instance of KBreak is performed with a validity check of supplied data, which must comply with the definition of k-break.

Class carries following attributes carrying information about k-break structure:

	KBreak.start_edges: a list of edges (in terms of paired vertices) that are to be removed by current KBreak

	KBreak.result_edges: a list of edges (in terms of paired vertices) that are to be created by current KBreak

	KBreak.multicolor: a bg.multicolor.Multicolor instance, that specifies the multicolor of edges that are to be removed / created by current KBreak

Main operations:

	KBreak.valid_kbreak_matchings(): a method that checks if provided sets of started / resulted edges comply with the notions ob k-break definition

	
__init__(start_edges, result_edges, multicolor, data=None)[source]

	Initialization of KBreak object.

The initialization process consists of multiple checks, before any assignment and initialization itself is performed.

First checks the fact, that information about start / result edges is supplied in form of paired vertices.
Then check is performed to make sure, that degrees of vertices, that current KBreak operates on, is preserved.

	Parameters:	
	start_edges (list(tuple(vertex, vertex), ...)) – a list of pairs of vertices, that specifies where edges shall be removed by current KBreak

	result_edges (list(tuple(vertex, vertex), ...)) – a list of pairs of vertices, that specifies where edges shall be created by current KBreak

	multicolor (bg.multicolor.Multicolor) – a multicolor, that specifies which edges between specified pairs of vertices are to be removed / created

	Returns:	a new instance of Kbreak

	Return type:	KBreak

	Raises:	ValueError

	
static valid_kbreak_matchings(start_edges, result_edges)[source]

	A staticmethod check implementation that makes sure that degrees of vertices, that are affected by current KBreak

By the notion of k-break, it shall keep the degree of vertices in bg.breakpoint_graph.BreakpointGraph the same, after its application.
By utilizing the Counter class, such check is performed, as the number the vertex is mentioned corresponds to its degree.

	Parameters:	
	start_edges (list(tuple(vertex, vertex), ...)) – a list of pairs of vertices, that specifies where edges shall be removed by KBreak

	result_edges (list(tuple(vertex, vertex), ...)) – a list of pairs of vertices, that specifies where edges shall be created by KBreak

	Returns:	a flag indicating if the degree of vertices are equal in start / result edges, targeted by KBreak

	Return type:	Boolean

multicolor.py

	
class bg.multicolor.Multicolor(*args)[source]

	Bases: object

Class providing implementation of multi-color notion for edges in bg.breakpoint_graph.BreakpointGraph.

Multi-color is a specific property of edges in Breakpoint Graph combinatorial object which represents similar adjacencies between genomic material in multiple genomes.

This class supports the following attributes, that carry information colors and their multiplicity of edges in bg.breakpoint_graph.BreakpointGraph.

	Multicolor.multicolors: a python Counter object which contains information about colors and their multiplicity for a given Multicolor instance

	Multicolor.colors: a property attribute providing a set of colors in Multicolor.multicolors attribute, hiding information about colors multiplicity

Main operations:

	+, -, +=, -=, ==, >, >=, <, <=

	Multicolor.update(): updates information in Multicolor.multicolors attribute of respective instance

	Multicolor.merge(): creates a new Multicolor object out of a list of provided Multicolor objects, gathering respective information about colors and their multiplicity

	Multicolor.left_merge(): updates respective Multicolor instance with information from supplied Multicolor object

	Multicolor.delete(): reduces information in respective instance Multicolor.multicolors attribute by iterating over supplied data

	Multicolor.similarity_score() computes how similar two supplied Multicolor object are

	Multicolor.split_colors() produces several new instances of Multicolor object by splitting information about colors by using provided guidance iterable set-like object

	
_Multicolor__delete(multicolor)

	Reduces information Multicolor attribute by iterating over supplied colors data.

In case supplied argument is a Multicolor instance, multi-color specific information to de deleted is set to its Multicolor.multicolors.
In other cases multi-color specific information to de deleted is obtained from iterating over the argument.

Colors and their multiplicity is reduces with a help of - method of python Counter object.

	Parameters:	multicolor (any iterable with colors object as entries or Multicolor) – information about colors to be deleted from Multicolor object

	Returns:	None, performs inplace changes

	
static _Multicolor__left_merge(multicolor1, multicolor2)

	Updates first supplied Multicolor instance with information from second supplied Multicolor instance.

First supplied instances attribute Multicolor.multicolors is updated with a help of + method of python Counter object.

	Parameters:	
	multicolor1 (Multicolor) – instance to update information in

	multicolor2 (Multicolor) – instance to use information for update from

	Returns:	updated first supplied Multicolor instance

	Return type:	Multicolor

	
classmethod _Multicolor__merge(*multicolors)

	Produces a new Multicolor object resulting from gathering information from all supplied Multicolor instances.

New Multicolor is created and its Multicolor.multicolors attribute is updated with similar attributes of supplied Multicolor objects.

Accounts for subclassing.

	Parameters:	multicolors (Multicolor) – variable number of Multicolor objects

	Returns:	object containing gathered information from all supplied arguments

	Return type:	Multicolor

	
__add__(other)[source]

	Implementation of + operation for Multicolor

Invokes a private Multicolor._Multicolor__merge() method to implement addition of two Multicolor instances.

	Parameters:	other (Multicolor) – object, whose multi-color information has to be added to current one

	Returns:	new Multicolor object, colors in which and their multiplicity result from addition of current Multicolor.multicolors and supplied Multicolor.multicolors

	Return type:	Multicolor

	Raises:	TypeError, if not Multicolor instance is provided

	
__eq__(other)[source]

	Implementation of == operation for Multicolor

Two Multicolor objects are called to be equal if colors that both of them contain and respective colors multiplicity are equal.
Multicolor instance never equals to non-Multicolor object.
Performs Multicolor.multicolors comparison with a help of == method of python Counter object.

	Parameters:	other (any python object) – an object to compare to

	Returns:	a flag of equality between current Multicolor instance and supplied object

	Return type:	Boolean

	
__ge__(other)[source]

	Implementation of “>=” operation for Multicolor

One Multicolor instance is said to be “greater than” the other Multicolor instance, if it contains greater or equal number of colors,
as the other Multicolor object does, and multiplicity of all of them is greater or equal than in the other multicolor.
Multicolor instance is never less, than non-Multicolor object.

	Parameters:	other (any python object) – an object to compare to

	Returns:	a flag if current Multicolor object is greater or equal than supplied object

	Return type:	Boolean

	
__gt__(other)[source]

	Implementation of > operation for Multicolor

One Multicolor instance is said to be “greater than” the other Multicolor instance, if it contains greater os equal number of colors,
as the other Multicolor object does, and multiplicity of all of them is greater or equal than in the other multicolor,
and at least one color has multiplicity greater, than in the other multicolor.
Multicolor instance is never less, than non-Multicolor object.

	Parameters:	other (any python object) – an object to compare to

	Returns:	a flag if current Multicolor object is less than supplied object

	Return type:	Boolean

	
__iadd__(other)[source]

	Implementation of += operation for Multicolor

Invokes a private Multicolor._Multicolor__merge() method to implement addition of two Multicolor instances.

	Parameters:	other (Multicolor) – object, whose multi-color information has to be added to current one

	Returns:	new Multicolor object, colors in which and their multiplicity result from addition of current Multicolor.multicolors and supplied Multicolor.multicolors

	Return type:	Multicolor

	Raises:	TypeError, if not Multicolor instance is provided

	
__init__(*args)[source]

	Initialization of Multicolor object.

Initialization is performed by supplied variable number of colors, that respective Multicolor object must contain information about Multiplicity of each color is determined by the number of times it occurs as argument in initialization process.

	Parameters:	args (any hashable python object) – variable number of colors to contain information about

	Returns:	a new instance of Multicolor

	Return type:	Multicolor

	
__isub__(other)[source]

	Implementation of - operation for Multicolor

Updates current Multicolor instance by updating its Multicolor.multicolors attribute information by deleting multi-colors in supplied Multicolor.multicolors attribute.
Utilizes - method of python Counter

	Parameters:	other (Multicolor) – object, whose multi-color information to subtract form current one

	Returns:	updated current Multicolor object

	Return type:	Multicolor

	Raises:	TypeError, if not Multicolor instance is supplied

	
__le__(other)[source]

	Implementation of “<=” operation for Multicolor

One Multicolor instance is said to be “less or equal than” the other Multicolor instance, if it contains less or equal number colors,
as the other Multicolor object does, and multiplicity of all of them is less or equal than in the other multicolor.
Multicolor instance is never less or equal, than non-Multicolor object.

	Parameters:	other (any python object) – an object to compare to

	Returns:	a flag if current Multicolor object is less or equal than supplied object

	Return type:	Boolean

	
__lt__(other)[source]

	Implementation of < operation for Multicolor

One Multicolor instance is said to be “less than” the other Multicolor instance, if it contains less or equal number of colors colors,
as the other Multicolor object does, and multiplicity of all of them is less or equal than in the other multicolor,
and at least one color has multiplicity less, than in the other multicolor.
Multicolor instance is never less, than non-Multicolor object.

	Parameters:	other (any python object) – an object to compare to

	Returns:	a flag if current Multicolor object is less than supplied object

	Return type:	Boolean

	
__mul__(other)[source]

	Multicolor can be multiplied by a number and it multiplies multiplicity of each present color respectively

	Parameters:	other – an integer multiplier

	Returns:	a new multicolor object resulted from multiplying each colors multiplicity by the multiplier

	
__sub__(other)[source]

	Implementation of - operation for Multicolor

Creates a new Multicolor instance by cloning current Multicolor object and updating its Multicolor.multicolors attribute information by deleting multi-colors in supplied Multicolor object.

	Parameters:	other (Multicolor) – object, whose multi-color information to subtract form current one

	Returns:	new Multicolor object, colors in which and their multiplicity result from subtracting of current Multicolor.multicolors and supplied Multicolor.multicolors attributes.

	Return type:	Multicolor

	Raises:	TypeError, if not Multicolor instance is supplied

	
colors

	Implements an “attribute” like object to access information about colors only, hiding information about their multiplicity.

Creates a fresh set object every time is accessed.

	Returns:	all colors that current Multicolor object contains information about.

	Return type:	set

	
delete(multicolor)[source]

	Reduces information Multicolor attribute by iterating over supplied colors data.

Works as proxy to respective call to private static method Multicolor._Multicolor__delete() for purposes of inheritance compatibility.

	Parameters:	multicolor (any iterable with colors object as entries or Multicolor) – information about colors to be deleted from Multicolor object

	Returns:	None, performs inplace changes

	
hashable_representation

	For a sake of speed check for multicolor presence, each multicolor has a deterministic hashable representation

	
intersect(other)[source]

	Computes the multiset intersection, between the current Multicolor and the supplied Multicolor

	Parameters:	other – another Multicolor object to compute a multiset intersection with

	Returns:	

	Raises:	TypeError – an intersection can be computed only between two Multicolor objects

	
classmethod left_merge(multicolor1, multicolor2)[source]

	Updates first supplied Multicolor instance with information from second supplied Multicolor instance.

Works as proxy to respective call to private static method Multicolor._Multicolor__left_merge() for purposes of inheritance compatibility.

Accounts for subclassing.

	Parameters:	
	multicolor1 (Multicolor) – instance to update information in

	multicolor2 (Multicolor) – instance to use information for update from

	Returns:	updated first supplied Multicolor instance

	Return type:	Multicolor

	
classmethod merge(*multicolors)[source]

	Produces a new Multicolor object resulting from gathering information from all supplied Multicolor instances.

Works as proxy to respective call to private static method Multicolor._Multicolor__merge() for purposes of inheritance compatibility.

	Parameters:	multicolors (Multicolor) – variable number of Multicolor objects

	Returns:	object containing gathered information from all supplied arguments

	Return type:	Multicolor

	
static similarity_score(multicolor1, multicolor2)[source]

	Computes how similar two Multicolor objects are from perspective of information, that they contain.

Two multicolors are called to be similar if they contain same colors (at least one). Multiplicity of colors is taken into account as well.

	Parameters:	
	multicolor1 (Multicolor) – first out of two multi-colors to compute similarity between

	multicolor2 (Multicolor) – second out of two multi-colors to compute similarity between

	Returns:	the similarity score between two supplied Multicolor object

	Return type:	int

	
classmethod split_colors(multicolor, guidance=None, sorted_guidance=False, account_for_color_multiplicity_in_guidance=True)[source]

	Produces several new instances of Multicolor object by splitting information about colors by using provided guidance iterable set-like object.

Guidance is an iterable type of object where each entry has information about groups of colors that has to be separated for current Multicolor.multicolors chunk.
If no Guidance is provided, single-color guidance of Multicolor.multicolors is created.
Guidance object is first reversed sorted to iterate over it from larges color set to the smallest one, as small color sets might be subsets of bigger ones, and shall be utilized only if bigger sets didn’t help in separating.

During the first iteration over the guidance information all subsets of Multicolor.multicolors that equal to entries of guidance are recorded.
During second iteration over remaining of the guidance information, if colors in Multicolor.multicolors form subsets of guidance entries, such instances are recorded.
After this two iterations, the rest of Multicolor.multicolors is recorded as non-tackled and is recorded on its own.

Multiplicity of all separated colors in respective chunks is preserved.

Accounts for subclassing.

	Parameters:	
	multicolor (Multicolor) – an instance information about colors in which is to be split

	guidance (iterable where each entry is iterable with colors entries) – information how colors have to be split in current Multicolor object

	sorted_guidance – a flag, that indicates is sorting of provided guidance is in order

	Returns:	a list of new Multicolor object colors information in which complies with guidance information

	Return type:	list of Multicolor objects

	
update(*args)[source]

	Updates information about colors and their multiplicity in respective Multicolor instance.

By iterating over supplied arguments each of which should represent a color object, updates information about colors and their multiplicity in current Multicolor instance.

	Parameters:	args (any hashable python object) – variable number of colors to add to currently existing multi colors data

	Returns:	None, performs inplace changes to Multicolor.multicolors attribute

edge.py

	
class bg.edge.BGEdge(vertex1, vertex2, multicolor, data=None)[source]

	Bases: object

A wrapper class for edges in bg.breakpoint_graph.BreakpointGraph

Is not stored on its own in the bg.breakpoint_graph.BreakpointGraph, but is rather can be supplied to work with and is returned if retrieval is performed.
BGEdge represents an undirected edge, thus distinction between BGEdge.vertex1 and BGEdge.vertex2 attributes is just from identities perspective, not from the order perspective.

This class supports th following attributes, that cary information about multi-color for this edge, as well as vertices, its is attached to:

	BGEdge.vertex1: a first vertex to be utilized in bg.breakpoint_graph.BreakpointGraph

	BGEdge.vertex2: a second vertex to be utilized in bg.breakpoint_graph.BreakpointGraph

Main operations:

	==

	BGEdge.merge(): produces a new BGEdge with multi-color information being merged from them

	
class BGEdgeJSONSchema(obj=None, extra=None, only=None, exclude=None, prefix='', strict=False, many=False, skip_missing=False, context=None)[source]

	Bases: marshmallow.schema.Schema

Marshmallow powered JSON schema used for serialization / deserialization of edge object

	
static BGEdge._BGEdge__vertex_json_id(vertex)

	A proxy property based access to vertices in current edge

When edge is serialized to JSON object, no explicit object for its vertices are created, but rather they are referenced
by special vertex json_ids.

	
BGEdge.__eq__(other)[source]

	Implementation of == operation for BGEdge

	Checks if current BGEdge instance comply in terms of vertices set with the supplied BGEdge, and then checks the equality of BGEdge.multicolor attributes in respective objects.

	BGEdge does not equal to non-BGEdge objects

	Parameters:	other (any python object) – object to compare current BGEdge to

	Returns:	flag of equality if current BGEdge object equals to the supplied one

	Return type:	Boolean

	
BGEdge.__init__(vertex1, vertex2, multicolor, data=None)[source]

	Initialization of BGEdge object.

	Parameters:	
	vertex1 (any hashable python object) – vertex the edges is outgoing from

	vertex2 (any hashable python object) – vertex the edges is ingoing to

	multicolor (bg.multicolor.Multicolor) – multicolor that this single edge shall posses

	Returns:	a new instance of BGEdge

	Return type:	BGEdge

	
BGEdge.colors_json_ids

	A proxy property based access to vertices in current edge

When edge is serialized to JSON object, no explicit object for its multicolor is created, but rather all colors,
taking into account their multiplicity, are referenced by their json_ids.

	
classmethod BGEdge.from_json(data, json_schema_class=None)[source]

	JSON deserialization method that retrieves edge instance from its json representation

If specific json schema is provided, it is utilized, and if not, a class specific is used

	
BGEdge.json_schema_name

	When genome is serialized information about JSON schema of such serialization can be recorded,
and this property provides access to it

	
classmethod BGEdge.merge(edge1, edge2)[source]

	Merges multi-color information from two supplied BGEdge instances into a new BGEdge

Since BGEdge represents an undirected edge, created edge’s vertices are assign according to the order in first supplied edge.

Accounts for subclassing.

	Parameters:	
	edge1 – first out of two edge information from which is to be merged into a new one

	edge2 – second out of two edge information from which is to be merged into a new one

	Returns:	a new undirected with multi-color information merged from two supplied BGEdge objects

	Raises:	ValueError

	
BGEdge.to_json(schema_info=True)[source]

	JSON serialization method that accounts for a possibility of field filtration and schema specification

	
BGEdge.vertex1_json_id

	First vertex json id access

	
BGEdge.vertex2_json_id

	Second vertex json id access

vertices.py

	
class bg.vertices.BGVertex(name)[source]

	Bases: object

An base class that represents a vertex (node) with all associated information in a breakpoint graph data structure

While class represents a base inheritance point for specific vertex implementations, it does implement most of
business logic operations, that vertex shall support.

While different type of vertices are to be represented with different python classes, they all have a string representation,
which mainly relies one the name attribute.

	
class bg.vertices.BlockVertex(name, mate_vertex=None)[source]

	Bases: bg.vertices.BGVertex

This class represents a special type of breakpoint graph vertex that correspond to a generic block extremity (gene/ synteny block/ etc.)

	
class BlockVertexJSONSchema(obj=None, extra=None, only=None, exclude=None, prefix='', strict=False, many=False, skip_missing=False, context=None)[source]

	Bases: bg.vertices.BGVertexJSONSchema

JSON schema for this class is redefined to tune the make_object method, that shall return BlockVertex instance, rather than BGVertex one

	
classmethod BlockVertex.from_json(data, json_schema_class=None)[source]

	This class overwrites the from_json method thus, making sure, that if from_json is called from this class instance, it will provide its JSON schema as a default one

	
BlockVertex.is_block_vertex

	This class implements a property check for vertex to belong to a class of vertices, that correspond to extremities of genomic blocks

	
BlockVertex.is_regular_vertex

	This class implements a property check for vertex to belong to class of regular vertices

	
class bg.vertices.InfinityVertex(name)[source]

	Bases: bg.vertices.BGVertex

This class represents a special type of breakpoint graph vertex that correspond to a generic extremity of genomic fragment (chromosome, scaffold, contig, etc.)

	
class InfinityVertexJSONSchema(obj=None, extra=None, only=None, exclude=None, prefix='', strict=False, many=False, skip_missing=False, context=None)[source]

	Bases: bg.vertices.BGVertexJSONSchema

JSON Schema for this class is redefined to tune the make_object method, that shall return InfinityVertex instance, rather than a BGVertex one

	
classmethod InfinityVertex.from_json(data, json_schema_class=None)[source]

	This class overwrites the from_json method, thus making sure that if from_json is called from this class instance, it will provide its JSON schema as a default one

	
InfinityVertex.is_infinity_vertex

	This class implements a property check for vertex to belong to a class of vertices, that correspond to standard extremities of genomic fragments

	
InfinityVertex.is_irregular_vertex

	This class implements a property check for vertex to belong to a class of vertices, that correspond to extremities of genomic fragments

	
InfinityVertex.name

	access to classic name attribute is hidden by this property

genome.py

	
class bg.genome.BGGenome(name)[source]

	Bases: object

A class that represent a genome object for the breakpoint graph

For purposes of breakpoint graph no additional information about genome is needed, except its name, that is used in various
algorithmic tasks (multicolor splitting, tree traversing, etc)

	
class BGGenomeJSONSchema(obj=None, extra=None, only=None, exclude=None, prefix='', strict=False, many=False, skip_missing=False, context=None)[source]

	Bases: marshmallow.schema.Schema

a JSON schema powered by marshmallow library to serialize/deserialize genome object into/from JSON format

	
BGGenome.__eq__(other)[source]

	Two genomes a called equal if they are of same class and their hash values are equal to each other

	
BGGenome.__hash__()[source]

	Since for breakpoint graph purposes distinction between genomes is made purely by their name, hash value of genome
is proxied to hash value of genomes name

	
BGGenome.__le__(other)[source]

	Genomes are ordered according to lexicographical ordering of their names

	
BGGenome.__lt__(other)[source]

	Genomes are ordered according to lexicographical ordering of their names

	
classmethod BGGenome.from_json(data, json_schema_class=None)[source]

	JSON deserialization method that retrieves a genome instance from its json representation

If specific json schema is provided, it is utilized, and if not, a class specific is used

	
BGGenome.json_id

	A genome is references multiple times, as for example in multicolor object, and such reference is done by genome
unique json id.

	
BGGenome.json_schema_name

	When genome is serialized information about JSON schema of such serialization can be recorded,
and this property provides access to it

	
BGGenome.to_json(schema_info=True)[source]

	JSON serialization method that accounts for a possibility of field filtration and schema specification

distances.py

util.py

 Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	bg 1.8 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 bg	

 	
 	
 bg.breakpoint_graph	

 	
 	
 bg.distances	

 	
 	
 bg.edge	

 	
 	
 bg.genome	

 	
 	
 bg.grimm	

 	
 	
 bg.kbreak	

 	
 	
 bg.multicolor	

 	
 	
 bg.tree	

 	
 	
 bg.utils	

 	
 	
 bg.vertices	

 Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	bg 1.8 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

_

 	

 	__add__() (bg.multicolor.Multicolor method)

 	__eq__() (bg.edge.BGEdge method)

 	

 	(bg.genome.BGGenome method)

 	(bg.multicolor.Multicolor method)

 	__ge__() (bg.multicolor.Multicolor method)

 	__gt__() (bg.multicolor.Multicolor method)

 	__hash__() (bg.genome.BGGenome method)

 	__iadd__() (bg.multicolor.Multicolor method)

 	__init__() (bg.breakpoint_graph.BreakpointGraph method)

 	

 	(bg.edge.BGEdge method)

 	(bg.kbreak.KBreak method)

 	(bg.multicolor.Multicolor method)

 	__isub__() (bg.multicolor.Multicolor method)

 	__le__() (bg.genome.BGGenome method)

 	

 	(bg.multicolor.Multicolor method)

 	__lt__() (bg.genome.BGGenome method)

 	

 	(bg.multicolor.Multicolor method)

 	__mul__() (bg.multicolor.Multicolor method)

 	__sub__() (bg.multicolor.Multicolor method)

 	_BGEdge__vertex_json_id() (bg.edge.BGEdge static method)

 	_BGTree__get_node_by_name() (bg.tree.BGTree method)

 	_BGTree__get_v_tree_consistent_leaf_based_hashable_multicolors() (bg.tree.BGTree method)

 	_BGTree__has_edge() (bg.tree.BGTree method)

 	_BGTree__has_node() (bg.tree.BGTree method)

 	_BGTree__update_consistent_multicolors() (bg.tree.BGTree method)

 	

 	_BGTree__vertex_is_leaf() (bg.tree.BGTree method)

 	_BreakpointGraph__add_bgedge() (bg.breakpoint_graph.BreakpointGraph method)

 	_BreakpointGraph__delete_all_bgedges_between_two_vertices() (bg.breakpoint_graph.BreakpointGraph method)

 	_BreakpointGraph__delete_bgedge() (bg.breakpoint_graph.BreakpointGraph method)

 	_BreakpointGraph__edges() (bg.breakpoint_graph.BreakpointGraph method)

 	_BreakpointGraph__edges_between_two_vertices() (bg.breakpoint_graph.BreakpointGraph method)

 	_BreakpointGraph__get_edge_by_two_vertices() (bg.breakpoint_graph.BreakpointGraph method)

 	_BreakpointGraph__get_edges_by_vertex() (bg.breakpoint_graph.BreakpointGraph method)

 	_BreakpointGraph__get_vertex_by_name() (bg.breakpoint_graph.BreakpointGraph method)

 	_BreakpointGraph__merge_all_bgedges_between_two_vertices() (bg.breakpoint_graph.BreakpointGraph method)

 	_BreakpointGraph__split_all_edges_between_two_vertices() (bg.breakpoint_graph.BreakpointGraph method)

 	_BreakpointGraph__split_bgedge() (bg.breakpoint_graph.BreakpointGraph method)

 	_BreakpointGraph__update() (bg.breakpoint_graph.BreakpointGraph method)

 	_GRIMMReader__assign_vertex_pair() (bg.grimm.GRIMMReader static method)

 	_Multicolor__delete() (bg.multicolor.Multicolor method)

 	_Multicolor__left_merge() (bg.multicolor.Multicolor static method)

 	_Multicolor__merge() (bg.multicolor.Multicolor class method)

A

 	

 	add_bgedge() (bg.breakpoint_graph.BreakpointGraph method)

 	add_edge() (bg.breakpoint_graph.BreakpointGraph method)

 	

 	(bg.tree.BGTree method)

 	

 	append() (bg.tree.BGTree method)

 	apply_kbreak() (bg.breakpoint_graph.BreakpointGraph method)

B

 	

 	bg.breakpoint_graph (module)

 	bg.distances (module)

 	bg.edge (module)

 	bg.genome (module)

 	bg.grimm (module)

 	bg.kbreak (module)

 	bg.multicolor (module)

 	bg.tree (module)

 	bg.utils (module)

 	bg.vertices (module)

 	BGEdge (class in bg.edge)

 	

 	BGEdge.BGEdgeJSONSchema (class in bg.edge)

 	bgedge_is_tree_consistent() (bg.tree.BGTree method)

 	bgedge_is_vtree_consistent() (bg.tree.BGTree method)

 	BGGenome (class in bg.genome)

 	BGGenome.BGGenomeJSONSchema (class in bg.genome)

 	BGTree (class in bg.tree)

 	BGVertex (class in bg.vertices)

 	BlockVertex (class in bg.vertices)

 	BlockVertex.BlockVertexJSONSchema (class in bg.vertices)

 	BreakpointGraph (class in bg.breakpoint_graph)

C

 	

 	colors (bg.multicolor.Multicolor attribute)

 	colors_json_ids (bg.edge.BGEdge attribute)

 	

 	connected_components_subgraphs() (bg.breakpoint_graph.BreakpointGraph method)

D

 	

 	delete() (bg.multicolor.Multicolor method)

 	delete_all_edges_between_two_vertices() (bg.breakpoint_graph.BreakpointGraph method)

 	

 	delete_bgedge() (bg.breakpoint_graph.BreakpointGraph method)

 	delete_edge() (bg.breakpoint_graph.BreakpointGraph method)

E

 	

 	edges() (bg.breakpoint_graph.BreakpointGraph method)

 	

 	(bg.tree.BGTree method)

 	

 	edges_between_two_vertices() (bg.breakpoint_graph.BreakpointGraph method)

F

 	

 	from_json() (bg.breakpoint_graph.BreakpointGraph class method)

 	

 	(bg.edge.BGEdge class method)

 	(bg.genome.BGGenome class method)

 	(bg.vertices.BlockVertex class method)

 	(bg.vertices.InfinityVertex class method)

G

 	

 	get_breakpoint_graph() (bg.grimm.GRIMMReader static method)

 	get_distance() (bg.tree.BGTree method)

 	get_edge_by_two_vertices() (bg.breakpoint_graph.BreakpointGraph method)

 	get_edges_by_vertex() (bg.breakpoint_graph.BreakpointGraph method)

 	get_edges_from_parsed_data() (bg.grimm.GRIMMReader static method)

 	

 	get_node_by_name() (bg.tree.BGTree method)

 	get_tree_consistent_multicolors() (bg.tree.BGTree method)

 	get_vertex_by_name() (bg.breakpoint_graph.BreakpointGraph method)

 	get_vtree_consistent_multicolors() (bg.tree.BGTree method)

 	GRIMMReader (class in bg.grimm)

H

 	

 	has_edge() (bg.tree.BGTree method)

 	has_node() (bg.tree.BGTree method)

 	

 	hashable_representation (bg.multicolor.Multicolor attribute)

I

 	

 	InfinityVertex (class in bg.vertices)

 	InfinityVertex.InfinityVertexJSONSchema (class in bg.vertices)

 	intersect() (bg.multicolor.Multicolor method)

 	is_block_vertex (bg.vertices.BlockVertex attribute)

 	is_comment_string() (bg.grimm.GRIMMReader static method)

 	

 	is_genome_declaration_string() (bg.grimm.GRIMMReader static method)

 	is_infinity_vertex (bg.vertices.InfinityVertex attribute)

 	is_irregular_vertex (bg.vertices.InfinityVertex attribute)

 	is_regular_vertex (bg.vertices.BlockVertex attribute)

J

 	

 	json_id (bg.genome.BGGenome attribute)

 	

 	json_schema_name (bg.edge.BGEdge attribute)

 	

 	(bg.genome.BGGenome attribute)

K

 	

 	KBreak (class in bg.kbreak)

L

 	

 	left_merge() (bg.multicolor.Multicolor class method)

M

 	

 	merge() (bg.breakpoint_graph.BreakpointGraph class method)

 	

 	(bg.edge.BGEdge class method)

 	(bg.multicolor.Multicolor class method)

 	merge_all_edges() (bg.breakpoint_graph.BreakpointGraph method)

 	merge_all_edges_between_two_vertices() (bg.breakpoint_graph.BreakpointGraph method)

 	

 	Multicolor (class in bg.multicolor)

 	multicolor_is_tree_consistent() (bg.tree.BGTree method)

 	multicolor_is_vtree_consistent() (bg.tree.BGTree method)

N

 	

 	name (bg.vertices.InfinityVertex attribute)

 	

 	nodes() (bg.breakpoint_graph.BreakpointGraph method)

 	

 	(bg.tree.BGTree method)

P

 	

 	parse_data_string() (bg.grimm.GRIMMReader static method)

 	

 	parse_genome_declaration_string() (bg.grimm.GRIMMReader static method)

R

 	

 	root (bg.tree.BGTree attribute)

S

 	

 	similarity_score() (bg.multicolor.Multicolor static method)

 	split_all_edges() (bg.breakpoint_graph.BreakpointGraph method)

 	split_all_edges_between_two_vertices() (bg.breakpoint_graph.BreakpointGraph method)

 	

 	split_bgedge() (bg.breakpoint_graph.BreakpointGraph method)

 	split_colors() (bg.multicolor.Multicolor class method)

 	split_edge() (bg.breakpoint_graph.BreakpointGraph method)

T

 	

 	to_json() (bg.breakpoint_graph.BreakpointGraph method)

 	

 	(bg.edge.BGEdge method)

 	(bg.genome.BGGenome method)

 	tree_consistent_multicolors (bg.tree.BGTree attribute)

 	

 	tree_consistent_multicolors_set (bg.tree.BGTree attribute)

U

 	

 	update() (bg.breakpoint_graph.BreakpointGraph method)

 	

 	(bg.multicolor.Multicolor method)

V

 	

 	valid_kbreak_matchings() (bg.kbreak.KBreak static method)

 	vertex1_json_id (bg.edge.BGEdge attribute)

 	vertex2_json_id (bg.edge.BGEdge attribute)

 	

 	vtree_consistent_multicolors (bg.tree.BGTree attribute)

 	vtree_consistent_multicolors_set (bg.tree.BGTree attribute)

 Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

 _static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		bg 1.8 documentation »

 All modules for which code is available

		bg.breakpoint_graph

		bg.edge

		bg.genome

		bg.grimm

		bg.kbreak

		bg.multicolor

		bg.tree

		bg.vertices

 © Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

_modules/bg/tree.html

 Navigation

 		
 index

 		
 modules |

 		bg 1.8 documentation »

 		Module code »

 Source code for bg.tree

-*- coding: utf-8 -*-
from collections import deque
from copy import deepcopy

from ete3 import Tree

from bg.genome import BGGenome
from bg.multicolor import Multicolor

__author__ = "Sergey Aganezov"
__email__ = "aganezov(at)gwu.edu"
__status__ = "production"

defines a default edge length in phylogenetic tree
DEFAULT_EDGE_LENGTH = 1

[docs]class BGTree(object):
 """ Class that is designed to store information about phylogenetic information and relations between multiple genomes

 Class utilizes a ete3.Tree object as an internal storage
 This tree can store information about:
 * edge lengths
 * tree topology
 """

 # class defined variables that are used as keys when storing edge specific data in the edge attribute dicts
 edge_length_attribute_name = "edge_length"

 def __init__(self, newick=None, newick_format=1, dist=DEFAULT_EDGE_LENGTH, leaf_wrapper=BGGenome):
 self.tree = Tree(newick=newick, format=newick_format, dist=dist)
 self.__root = self.tree
 self.__leaf_wrapper = leaf_wrapper # a callable, that would be called with leaf name as an argument for Multicolor class
 self.multicolors_are_up_to_date = False
 self.__tree_consistent_multicolors_set = {Multicolor().hashable_representation}
 self.__tree_consistent_multicolors = [Multicolor()]
 self.__vtree_consistent_multicolors_set = {Multicolor().hashable_representation}
 self.__vtree_consistent_multicolors = [Multicolor()]

[docs] def nodes(self):
 """ Proxies iteration to the underlying Tree.iter_descendants iterator, but first yielding a root element

 :return: iterator over all descendants of a root, starting with a root, in current tree
 :rtype: iterator
 """
 yield self.__root
 for entry in self.__root.iter_descendants():
 yield entry

[docs] def edges(self):
 """

 :return: iterator over edges in current tree.
 :rtype: iterator
 """
 if self.__root is None:
 return
 nodes = deque([self.__root])
 while len(nodes) > 0:
 current_node = nodes.popleft()
 if current_node.is_leaf():
 continue
 else:
 for child in current_node.children:
 yield current_node, child if not child.is_leaf() else self.__leaf_wrapper(child.name)
 if not child.is_leaf():
 nodes.append(child)

[docs] def add_edge(self, node1_name, node2_name, edge_length=DEFAULT_EDGE_LENGTH):
 """ Adds a new edge to the current tree with specified characteristics

 Forbids addition of an edge, if a parent node is not present
 Forbids addition of an edge, if a child node already exists

 :param node1_name: name of the parent node, to which an edge shall be added
 :param node2_name: name of newly added child node
 :param edge_length: a length of specified edge
 :return: nothing, inplace changes
 :raises: ValueError (if parent node IS NOT present in the tree, or child node IS already present in the tree)
 """
 if not self.__has_node(name=node1_name):
 raise ValueError("Can not add an edge to a non-existing node {name}".format(name=node1_name))
 if self.__has_node(name=node2_name):
 raise ValueError("Can not add an edge to already existing node {name}".format(name=node2_name))
 self.multicolors_are_up_to_date = False
 self.__get_node_by_name(name=node1_name).add_child(name=node2_name, dist=edge_length)

[docs] def get_node_by_name(self, name):
 """ Proxies the call to the __get_node_by_name method """
 return self.__get_node_by_name(name=name)

 def __get_node_by_name(self, name):
 """ Returns a first TreeNode object, which name matches the specified argument

 :raises: ValueError (if no node with specified name is present in the tree)
 """
 try:
 for entry in filter(lambda x: x.name == name, self.nodes()):
 return entry
 except StopIteration:
 raise ValueError("Attempted to retrieve a non-existing tree node with name: {name}"
 "".format(name=name))

 def __has_edge(self, node1_name, node2_name, account_for_direction=True):
 """ Returns a boolean flag, telling if a tree has an edge with two nodes, specified by their names as arguments

 If a account_for_direction is specified as True, the order of specified node names has to relate to parent - child relation,
 otherwise both possibilities are checked
 """
 try:
 p1 = self.__get_node_by_name(name=node1_name)
 wdir = node2_name in (node.name for node in p1.children)
 if account_for_direction:
 return wdir
 else:
 p2 = self.__get_node_by_name(name=node2_name)
 return wdir or node1_name in (node.name for node in p2.children)
 except ValueError:
 return False

[docs] def has_edge(self, node1_name, node2_name, account_for_direction=True):
 """ Proxies a call to the __has_edge method """
 return self.__has_edge(node1_name=node1_name, node2_name=node2_name, account_for_direction=account_for_direction)

 def __has_node(self, name):
 """ Check is the current Tree has a node, matching by name to the specified argument """
 result = self.__get_node_by_name(name=name)
 return result is not None

[docs] def has_node(self, name):
 """ Proxies a call to __has_node method """
 return self.__has_node(name=name)

 @property
 def root(self):
 """ A property based call for the root pointer in current tree """
 return self.__root

[docs] def get_distance(self, node1_name, node2_name):
 """ Returns a length of an edge / path, if exists, from the current tree

 :param node1_name: a first node name in current tree
 :param node2_name: a second node name in current tree
 :return: a length of specified by a pair of vertices edge / path
 :rtype: `Number`
 :raises: ValueError, if requested a length of an edge, that is not present in current tree
 """
 return self.__root.get_distance(target=node1_name, target2=node2_name)

 def __vertex_is_leaf(self, node_name):
 """ Checks if a node specified by its name as an argument is a leaf in the current Tree

 :raises: ValueError (if no node with specified name is present in the tree)
 """
 return self.__get_node_by_name(name=node_name).is_leaf()

 def __get_v_tree_consistent_leaf_based_hashable_multicolors(self):
 """ Internally used method, that recalculates VTree-consistent sets of leaves in the current tree """
 result = []
 nodes = deque([self.__root])
 while len(nodes) > 0:
 current_node = nodes.popleft()
 children = current_node.children
 nodes.extend(children)
 if not current_node.is_leaf():
 leaves = filter(lambda node: node.is_leaf(), current_node.get_descendants())
 result.append(Multicolor(*[self.__leaf_wrapper(leaf.name) for leaf in leaves]))
 else:
 result.append(Multicolor(self.__leaf_wrapper(current_node.name)))
 result.append(Multicolor())
 return result

[docs] def get_tree_consistent_multicolors(self):
 """ Returns a copy of the list of T-consistent multicolors from current tree """
 return deepcopy(self.tree_consistent_multicolors)

[docs] def get_vtree_consistent_multicolors(self):
 """ Returns a copy of the list of VT-consistent multicolors from current tree """
 return deepcopy(self.vtree_consistent_multicolors)

 def __update_consistent_multicolors(self):
 """ Internally used method, that recalculates T-consistent / VT-consistent multicolors for current tree topology
 """
 v_t_consistent_multicolors = self.__get_v_tree_consistent_leaf_based_hashable_multicolors()

 hashed_vtree_consistent_leaves_multicolors = {mc.hashable_representation for mc in v_t_consistent_multicolors}
 self.vtree_consistent_multicolors_set = hashed_vtree_consistent_leaves_multicolors
 self.vtree_consistent_multicolors = [Multicolor(*hashed_multicolor) for hashed_multicolor in
 hashed_vtree_consistent_leaves_multicolors]
 result = []
 # T-consistent multicolors can be viewed as VT-consistent multicolors united with all of their complements
 full_multicolor = v_t_consistent_multicolors[0]
 for multicolor in v_t_consistent_multicolors:
 result.append(multicolor)
 result.append(full_multicolor - multicolor)

 hashed_tree_consistent_leaves_multicolors = {mc.hashable_representation for mc in result}
 self.tree_consistent_multicolors_set = hashed_tree_consistent_leaves_multicolors
 self.tree_consistent_multicolors = [Multicolor(*hashed_multicolor) for hashed_multicolor in
 hashed_tree_consistent_leaves_multicolors]
 self.multicolors_are_up_to_date = True

 @property
 def tree_consistent_multicolors(self):
 """ Property based getter, that checks for consistency in terms of precomputed T-consistent multicolors,
 recomputes all consistent multicolors if tree topology has changed and returns internally stored list of T-consistent multicolors

 """
 if not self.multicolors_are_up_to_date:
 self.__update_consistent_multicolors()
 return self.__tree_consistent_multicolors

 @property
 def tree_consistent_multicolors_set(self):
 """ Property based getter, that checks for consistency in terms of precomputed T-consistent multicolors,
 recomputes all consistent multicolors if tree topology has changed and returns internally stored set of hashable
 representation of T-consistent multicolors

 """
 if not self.multicolors_are_up_to_date:
 self.__update_consistent_multicolors()
 return self.__tree_consistent_multicolors_set

 @tree_consistent_multicolors.setter
 def tree_consistent_multicolors(self, value):
 self.__tree_consistent_multicolors = value

 @tree_consistent_multicolors_set.setter
 def tree_consistent_multicolors_set(self, value):
 self.__tree_consistent_multicolors_set = value

 @property
 def vtree_consistent_multicolors(self):
 """ Property based getter, that checks for consistency in terms of precomputed VT-consistent multicolors,
 recomputes all consistent multicolors if tree topology has changed and returns internally stored list of VT-consistent
 multicolors

 """
 if not self.multicolors_are_up_to_date:
 self.__update_consistent_multicolors()
 return self.__vtree_consistent_multicolors

 @property
 def vtree_consistent_multicolors_set(self):
 """ Property based getter, that checks for consistency in terms of precomputed VT-consistent multicolors,
 recomputes all consistent multicolors if tree topology has changed and returns internally stored set of hashable
 representation of VT-consistent multicolors

 """
 if not self.multicolors_are_up_to_date:
 self.__update_consistent_multicolors()
 return self.__vtree_consistent_multicolors_set

 @vtree_consistent_multicolors.setter
 def vtree_consistent_multicolors(self, value):
 self.__vtree_consistent_multicolors = value

 @vtree_consistent_multicolors_set.setter
 def vtree_consistent_multicolors_set(self, value):
 self.__vtree_consistent_multicolors_set = value

[docs] def multicolor_is_tree_consistent(self, multicolor):
 """ Checks is supplied multicolor is T-consistent """
 return multicolor.hashable_representation in self.tree_consistent_multicolors_set

[docs] def multicolor_is_vtree_consistent(self, multicolor):
 """ Checks is supplied multicolor is VT-consistent """
 return multicolor.hashable_representation in self.vtree_consistent_multicolors_set

[docs] def bgedge_is_vtree_consistent(self, bgedge):
 """ Checks is supplied BGEdge (from the perspective of its multicolor is VT-consistent) """
 return self.multicolor_is_vtree_consistent(bgedge.multicolor)

[docs] def bgedge_is_tree_consistent(self, bgedge):
 """ Checks is supplied BGEdge (from the perspective of its multicolor is T-consistent) """
 return self.multicolor_is_tree_consistent(bgedge.multicolor)

[docs] def append(self, node_name, tree, copy=False):
 """ Append a specified tree (represented by a root TreeNode element) to the node, specified by its name

 :param copy: a flag denoting if the appended tree has to be added as is, or is the deepcopy of it has to be used
 :type copy: Boolean
 :raises: ValueError (if no node with a specified name, to which the specified tree has to be appended, is present in the current tree)
 """
 self.multicolors_are_up_to_date = False
 tree_to_append = tree.__root if not copy else deepcopy(tree.__root)
 self.__get_node_by_name(node_name).add_child(tree_to_append)

 © Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

_modules/bg/genome.html

 Navigation

 		
 index

 		
 modules |

 		bg 1.8 documentation »

 		Module code »

 Source code for bg.genome

-*- coding: utf-8 -*-
from marshmallow import Schema, fields

__author__ = "aganezov"
__email__ = "aganezov(at)gwu.edu"
__status__ = "production"

module wide constant, that is utilized for json dict key creation
BGGenome_JSON_SCHEMA_JSON_KEY = "_py__bg_genome_json_schema"

[docs]class BGGenome(object):
 """ A class that represent a genome object for the breakpoint graph

 For purposes of breakpoint graph no additional information about genome is needed, except its name, that is used in various
 algorithmic tasks (multicolor splitting, tree traversing, etc)
 """
[docs] class BGGenomeJSONSchema(Schema):
 """ a JSON schema powered by marshmallow library to serialize/deserialize genome object into/from JSON format
 """
 _py__bg_genome_json_schema = fields.String(attribute="json_schema_name")
 g_id = fields.Integer(attribute="json_id")
 name = fields.String()

 def make_object(self, data):
 if "name" not in data:
 raise ValueError("Error during genome serialization. \"name\" key is not present in json object")
 name = data["name"]
 return BGGenome(name=name)

 # class wide variable for json serialization/deserialization. Created once for a whole class, as thousands of objects
 # undergo serialization / deserialization, and schema instantiation in each case would require additional resources
 json_schema = BGGenomeJSONSchema()

 def __init__(self, name):
 self.name = name

[docs] def __eq__(self, other):
 """ Two genomes a called equal if they are of same class and their hash values are equal to each other """
 if not isinstance(other, BGGenome):
 return False
 return hash(self) == hash(other)

[docs] def __hash__(self):
 """ Since for breakpoint graph purposes distinction between genomes is made purely by their name, hash value of genome
 is proxied to hash value of genomes name
 """
 return hash(self.name)

 @property
 def json_id(self):
 """ A genome is references multiple times, as for example in multicolor object, and such reference is done by genome
 unique json id.
 """
 return hash(self)

 @property
 def json_schema_name(self):
 """ When genome is serialized information about JSON schema of such serialization can be recorded,
 and this property provides access to it
 """
 return self.json_schema.__class__.__name__

[docs] def to_json(self, schema_info=True):
 """ JSON serialization method that accounts for a possibility of field filtration and schema specification """
 old_exclude_fields = self.json_schema.exclude
 new_exclude_fields = list(old_exclude_fields)
 if not schema_info:
 new_exclude_fields.append(BGGenome_JSON_SCHEMA_JSON_KEY)
 # monkey patch schema `exclude` attribute to ignore some fields in result json object
 self.json_schema.exclude = new_exclude_fields
 result = self.json_schema.dump(self).data
 # reverse the result of monkey patching
 self.json_schema.exclude = old_exclude_fields
 return result

 @classmethod
[docs] def from_json(cls, data, json_schema_class=None):
 """ JSON deserialization method that retrieves a genome instance from its json representation

 If specific json schema is provided, it is utilized, and if not, a class specific is used
 """
 schema = cls.json_schema if json_schema_class is None else json_schema_class()
 return schema.load(data).data

[docs] def __lt__(self, other):
 """ Genomes are ordered according to lexicographical ordering of their names """
 if not isinstance(other, BGGenome):
 return True
 return self.name < other.name

[docs] def __le__(self, other):
 """ Genomes are ordered according to lexicographical ordering of their names """
 return self < other or self == other

 © Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		bg 1.8 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

_modules/bg/grimm.html

 Navigation

 		
 index

 		
 modules |

 		bg 1.8 documentation »

 		Module code »

 Source code for bg.grimm

-*- coding: utf-8 -*-
from __future__ import print_function

from copy import deepcopy

from bg.breakpoint_graph import BreakpointGraph
from bg.edge import BGEdge
from bg.genome import BGGenome
from bg.multicolor import Multicolor
from bg.utils import add_to_dict_with_path
from bg.vertices import BlockVertex, TaggedVertex, TaggedBlockVertex, TaggedInfinityVertex, BGVertex

__author__ = "Sergey Aganezov"
__email__ = "aganezov(at)gwu.edu"
__status__ = "production"

[docs]class GRIMMReader(object):
 """ Class providing a staticmethod based implementation of reading GRIMM formatted data file-like object and obtain a :class:`bg.breakpoint_graph.BreakpointGraph` instance.

 There are no private methods implementations for all public methods so inheritance shall be performed with caution.
 For now GRIMM format is a bit simplified and straightened from the version provided at http://grimm.ucsd.edu/GRIMM/grimm_instr.html

 Supported GRIMM format:

 #) all strings are stripped from both sides for tabs, spaces, etc. Below when said "string", stripped string is assumed
 #) ``genome declaration`` is specified on a string that starts with ``>``

 #) ``genome name`` is everything, that follows ``>`` sign

 #) all input data before the next genome declaration (or EOF) will be attributed to this genome by its ``genome name``
 #) a data string (containing information about gene orders) is a string that is not a genome declaration, comment, empty string

 #) every new genomic fragments (chromosome/scaffold/contig/etc) must be specified on a new string
 #) every data string must contain a ``$`` (for linear case) or ``@`` (for circular case) gene order terminator, that indicates the end of current genomic fragment
 #) everything after the gene order terminator is ignored
 #) if no gene order before gene order terminator is specified an error would be raised
 #) gene order:
 #) gene order is a sequence of space separated block name strings with optional orientation declaration
 #) block can be described by a regular expression ``^((-|\+).+$)|([^-\+]+$)`` and viewed as follows:
 if the sign (``+`` or ``-``) is present as a first character, then it must be followed by a nonempty block name string
 if sign is not present, everything is assumed to be a block name, and ``+`` orientation is assigned to it automatically

 #) comment string starts with ``#`` sign and is ignored during data processing

 Main operations:

 * :meth:`GRIMMReader.is_genome_declaration_string`: checks if supplied string after stripping corresponds to ``genome declaration``
 * :meth:`GRIMMReader.is_comment_string`: checks if supplied string after stripping corresponds to comment and shall thus be ignored in data processing
 * :meth:`GRIMMReader.parse_genome_declaration_string`: parses a string marked as ``genome declaration`` and returns a corresponding genome name
 * :meth:`GRIMMReader.parse_data_string`: parses a string assumed to contain gene order data, retrieving information about fragment type, gene order, blocks names and their orientation
 * :meth:`GRIMMReader.get_edges_from_parsed_data`: taking into account fragment type (circular|linear) and retrieved gene order information translates adjacencies between blocks into edges for addition to the :class:`bg.breakpoint_graph.BreakpointGraph`
 * :meth:`GRIMMReader.get_breakpoint_graph`: taking a file-like object transforms supplied gene order data into the language of BreakpointGraph
 """

 COMMENT_DATA_STRING_SEPARATOR = "::"
 PATH_SEPARATOR_STRING = ":"

 @staticmethod
[docs] def is_genome_declaration_string(data_string):
 """ Checks if supplied string after stripping corresponds to ``genome declaration``

 :param data_string: a string to check genome name declaration in
 :type data_string: ``str``
 :return: a flag indicating if supplied string corresponds to genome name declaration
 :rtype: ``Boolean``
 """
 data_string = data_string.strip()
 return data_string.startswith(">") and len(data_string) > 1

 @staticmethod
[docs] def is_comment_string(data_string):
 """ Checks if supplied string after stripping corresponds to comment and shall thus be ignored in data processing

 :param data_string: a string to check if it is a pure comment string
 :type data_string: ``str``
 :return: a flag indicating if supplied string is a pure comment string
 :rtype: ``Boolean``
 """
 return data_string.strip().startswith("#")

 @staticmethod
[docs] def parse_genome_declaration_string(data_string):
 """ Parses a string marked as ``genome declaration`` and returns a corresponding :class:`bg.genome.BGGenome`

 :param data_string: a string to retrieve genome name from
 :type data_string: ``str``
 :return: genome name from supplied genome declaration string
 :rtype: :class:`bg.genome.BGGenome`
 """
 data_string = data_string.strip()
 return BGGenome(data_string[1:])

 @staticmethod
[docs] def parse_data_string(data_string):
 """ Parses a string assumed to contain gene order data, retrieving information about fragment type, gene order, blocks names and their orientation

 First checks if gene order termination signs are present.
 Selects the earliest one.
 Checks that information preceding is not empty and contains gene order.
 Generates results structure by retrieving information about fragment type, blocks names and orientations.

 NOTE: comment signs do not work in data strings. Rather use the fact that after first gene order termination sign everything is ignored for processing

 :param data_string: a string to retrieve gene order information from
 :type data_string: ``str``
 :return: (``$`` | ``@``, [(``+`` | ``-``, block_name),...]) formatted structure corresponding to gene order in supplied data string and containing fragments type
 :rtype: ``tuple(str, list((str, str), ...))``
 """
 data_string = data_string.strip()
 linear_terminator_index = data_string.index("$") if "$" in data_string else -1
 circular_terminator_index = data_string.index("@") if "@" in data_string else -1
 if linear_terminator_index < 0 and circular_terminator_index < 0:
 raise ValueError("Invalid data string. No chromosome termination sign ($|@) found.")
 if linear_terminator_index == 0 or circular_terminator_index == 0:
 raise ValueError("Invalid data string. No data found before chromosome was terminated.")
 if linear_terminator_index < 0 or 0 < circular_terminator_index < linear_terminator_index:
 ###
 #
 # we either encountered only a circular chromosome termination sign
 # or we have encountered it before we've encountered the circular chromosome termination sign first
 #
 ###
 chr_type = "@"
 terminator_index = circular_terminator_index
 else:
 chr_type = "$"
 terminator_index = linear_terminator_index
 ###
 #
 # everything after first fragment termination sign is omitted
 #
 ###
 data = data_string[:terminator_index].strip()
 ###
 #
 # genomic blocks are separated between each other by the space character
 #
 ###
 split_data = data.split()
 blocks = []
 for block in split_data:
 ###
 #
 # since positively oriented blocks can be denoted both as "+block" as well as "block"
 # we need to figure out where "block" name starts
 #
 ###
 cut_index = 1 if block.startswith("-") or block.startswith("+") else 0
 if cut_index == 1 and len(block) == 1:
 ###
 #
 # block can not be empty
 # from this one can derive the fact, that names "+" and "-" for blocks are forbidden
 #
 ###
 raise ValueError("Empty block name definition")
 blocks.append(("-" if block.startswith("-") else "+", block[cut_index:]))
 return chr_type, blocks

 @staticmethod
 def __assign_vertex_pair(block):
 """ Assigns usual BreakpointGraph type vertices to supplied block.

 Vertices are labeled as "block_name" + "h" and "block_name" + "t" according to blocks orientation.

 :param block: information about a genomic block to create a pair of vertices for in a format of (``+`` | ``-``, block_name)
 :type block: ``(str, str)``
 :return: a pair of vertices labeled according to supplied blocks name (respecting blocks orientation)
 :rtype: ``(str, str)``
 """
 sign, name = block
 data = name.split(BlockVertex.NAME_SEPARATOR)
 root_name, data = data[0], data[1:]
 tags = [entry.split(TaggedVertex.TAG_SEPARATOR) for entry in data]
 for tag_entry in tags:
 if len(tag_entry) == 1:
 tag_entry.append(None)
 elif len(tag_entry) > 2:
 tag_entry[1:] = [TaggedVertex.TAG_SEPARATOR.join(tag_entry[1:])]
 tail, head = root_name + "t", root_name + "h"
 tail, head = TaggedBlockVertex(tail), TaggedBlockVertex(head)
 tail.mate_vertex = head
 head.mate_vertex = tail
 for tag, value in tags:
 head.add_tag(tag, value)
 tail.add_tag(tag, value)
 return (tail, head) if sign == "+" else (head, tail)

 @staticmethod
[docs] def get_edges_from_parsed_data(parsed_data):
 """ Taking into account fragment type (circular|linear) and retrieved gene order information translates adjacencies between blocks into edges for addition to the :class:`bg.breakpoint_graph.BreakpointGraph`

 In case supplied fragment is linear (``$``) special artificial vertices (with ``__infinity`` suffix) are introduced to denote fragment extremities

 :param parsed_data: (``$`` | ``@``, [(``+`` | ``-``, block_name),...]) formatted data about fragment type and ordered list of oriented blocks
 :type parsed_data: ``tuple(str, list((str, str), ...))``
 :return: a list of vertices pairs that would correspond to edges in :class:`bg.breakpoint_graph.BreakpointGraph`
 :rtype: ``list((str, str), ...)``
 """
 chr_type, blocks = parsed_data
 vertices = []
 for block in blocks:
 ###
 #
 # each block is represented as a pair of vertices (that correspond to block extremities)
 #
 ###
 v1, v2 = GRIMMReader.__assign_vertex_pair(block)
 vertices.append(v1)
 vertices.append(v2)
 if chr_type == "@":
 ###
 #
 # if we parse a circular genomic fragment we must introduce an additional pair of vertices (edge)
 # that would connect two outer most vertices in the vertex list, thus connecting fragment extremities
 #
 ###
 vertex = vertices.pop()
 vertices.insert(0, vertex)
 elif chr_type == "$":
 ###
 #
 # if we parse linear genomic fragment, we introduce two artificial (infinity) vertices
 # that correspond to fragments ends, and introduce edges between them and respective outermost block vertices
 #
 # if outermost vertices at this moment are repeat vertices, the outermost pair shall be discarded and the innermost
 # vertex info shall be utilized in the infinity vertex, that is introduced for the fragment extremity
 #
 ###
 if vertices[0].is_repeat_vertex:
 left_iv_tags = sorted([(tag, value) if tag != "repeat" else (tag, BGVertex.get_vertex_name_root(vertices[1].name))
 for tag, value in vertices[1].tags])
 left_iv_root_name = BGVertex.get_vertex_name_root(vertices[2].name)
 vertices = vertices[2:]
 else:
 left_iv_tags = []
 left_iv_root_name = vertices[0].name
 if vertices[-1].is_repeat_vertex:
 right_iv_tags = sorted(
 [(tag, value) if tag != "repeat" else (tag, BGVertex.get_vertex_name_root(vertices[-2].name))
 for tag, value in vertices[-2].tags])
 right_iv_root_name = BGVertex.get_vertex_name_root(vertices[-3].name)
 vertices = vertices[:-2]
 else:
 right_iv_tags = []
 right_iv_root_name = BGVertex.get_vertex_name_root(vertices[-1].name)
 left_iv, right_iv = TaggedInfinityVertex(left_iv_root_name), TaggedInfinityVertex(right_iv_root_name)
 left_iv.tags = left_iv_tags
 right_iv.tags = right_iv_tags
 vertices.insert(0, left_iv)
 vertices.append(right_iv)
 return [(v1, v2) for v1, v2 in zip(vertices[::2], vertices[1::2])]

 @staticmethod
[docs] def get_breakpoint_graph(stream, merge_edges=True):
 """ Taking a file-like object transforms supplied gene order data into the language of

 :param merge_edges: a flag that indicates if parallel edges in produced breakpoint graph shall be merged or not
 :type merge_edges: ``bool``
 :param stream: any iterable object where each iteration produces a ``str`` object
 :type stream: ``iterable`` ver ``str``
 :return: an instance of a BreakpointGraph that contains information about adjacencies in genome specified in GRIMM formatted input
 :rtype: :class:`bg.breakpoint_graph.BreakpointGraph`
 """
 result = BreakpointGraph()
 current_genome = None
 fragment_data = {}
 for line in stream:
 line = line.strip()
 if len(line) == 0:
 ###
 #
 # empty lines are omitted
 #
 ###
 continue
 if GRIMMReader.is_genome_declaration_string(data_string=line):
 ###
 #
 # is we have a genome declaration, we must update current genome
 # all following gene order data (before EOF or next genome declaration) will be attributed to current genome
 #
 ###
 current_genome = GRIMMReader.parse_genome_declaration_string(data_string=line)
 fragment_data = {}
 elif GRIMMReader.is_comment_string(data_string=line):
 if GRIMMReader.is_comment_data_string(string=line):
 path, (key, value) = GRIMMReader.parse_comment_data_string(comment_data_string=line)
 if len(path) > 0 and path[0] == "fragment":
 add_to_dict_with_path(destination_dict=fragment_data, key=key, value=value, path=path)
 else:
 continue
 elif current_genome is not None:
 ###
 #
 # gene order information that is specified before the first genome is specified can not be attributed to anything
 # and thus omitted
 #
 ###
 parsed_data = GRIMMReader.parse_data_string(data_string=line)
 edges = GRIMMReader.get_edges_from_parsed_data(parsed_data=parsed_data)
 for v1, v2 in edges:
 edge_specific_data = {
 "fragment": {
 "forward_orientation": (v1, v2)
 }
 }
 edge = BGEdge(vertex1=v1, vertex2=v2, multicolor=Multicolor(current_genome), data=deepcopy(fragment_data))
 edge.update_data(source=edge_specific_data)
 result.add_bgedge(bgedge=edge,
 merge=merge_edges)
 return result

 @classmethod
 def is_comment_data_string(cls, string):
 s = string.strip()
 comment_string = cls.is_comment_string(data_string=s)
 s = s[1:] # removing # from beginning
 split_result = s.split(cls.COMMENT_DATA_STRING_SEPARATOR)
 if len(split_result) < 2:
 return False
 specification = split_result[0]
 return comment_string & ("data" == specification.strip())

 @classmethod
 def parse_comment_data_string(cls, comment_data_string):
 entries = list(map(lambda string: string.strip(), comment_data_string.split(cls.COMMENT_DATA_STRING_SEPARATOR)))[1:]
 data = list(map(lambda string: string.strip(), entries[0].split(cls.PATH_SEPARATOR_STRING)))
 path, key_value_entry = data[:-1], data[-1]
 key_value_entry_split = list(map(lambda string: string.strip(), key_value_entry.split("=")))
 if len(key_value_entry_split) < 2:
 key = ""
 value = ""
 else:
 key, value = key_value_entry_split
 return path, (key, value)

class GRIMMWriter(object):
 @staticmethod
 def get_blocks_in_grimm_from_breakpoint_graph(bg):
 """
 :param bg: a breakpoint graph, that contians all the information
 :type bg: ``bg.breakpoint_graph.BreakpointGraph``
 :return: list of strings, which represent genomes present in breakpoint graph as orders of blocks and is compatible with GRIMM format
 """
 result = []
 genomes = bg.get_overall_set_of_colors()
 for genome in genomes:
 genome_graph = bg.get_genome_graph(color=genome)
 genome_blocks_orders = genome_graph.get_blocks_order()
 blocks_orders = genome_blocks_orders[genome]
 if len(blocks_orders) > 0:
 result.append(">{genome_name}".format(genome_name=genome.name))
 for chr_type, blocks_order in blocks_orders:
 string = " ".join(value if sign == "+" else sign + value for sign, value in blocks_order)
 string += " {chr_type}".format(chr_type=chr_type)
 result.append(string)
 return result

 @classmethod
 def print_genomes_as_grimm_blocks_orders(cls, bg, file_name):
 with open(file_name, "wt") as destination:
 for grimm_string in cls.get_blocks_in_grimm_from_breakpoint_graph(bg=bg):
 print(grimm_string, file=destination)

 @staticmethod
 def get_fragments_in_grimm_from_breakpoint_graph(bg):
 result = []
 genomes = bg.get_overall_set_of_colors()
 for genome in genomes:
 genome_graph = bg.get_genome_graph(color=genome)
 fragments_orders = genome_graph.get_fragments_orders()
 fragments_orders = fragments_orders[genome]
 if len(fragments_orders) > 0 and any(map(lambda entry: len(entry[1]) > 0, fragments_orders)):
 result.append(">{genome_name}".format(genome_name=genome.name))
 for chr_type, fragments_order in fragments_orders:
 string = " ".join(value if sign == "+" else (sign + value) for sign, value in fragments_order)
 string += " {chr_type}".format(chr_type=chr_type)
 result.append(string)
 return result

 © Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

_modules/bg/vertices.html

 Navigation

 		
 index

 		
 modules |

 		bg 1.8 documentation »

 		Module code »

 Source code for bg.vertices

-*- coding: utf-8 -*-
from bisect import bisect_left

from marshmallow import Schema, fields

__author__ = "Sergey Aganezov"
__email__ = "aganezov(at)gwu.edu"
__status__ = "production"

INFINITY_VERTEX_IDENTIFIER = "__infinity"
BGVertex_JSON_SCHEMA_JSON_KEY = "_py__bg_vertex_json_schema"

[docs]class BGVertex(object):
 """ An base class that represents a vertex (node) with all associated information in a breakpoint graph data structure

 While class represents a base inheritance point for specific vertex implementations, it does implement most of
 business logic operations, that vertex shall support.

 While different type of vertices are to be represented with different python classes, they all have a string representation,
 which mainly relies one the `name` attribute.
 """

 # this class based variable is utilized to the purpose if separating vertex root name from any additions that would specify some special properties of the vertex
 # (like vertex classes, special properties, etc)
 NAME_SEPARATOR = "__"

 # each vertex is json serializable/deserializable and this is implemented with a help of marshmallow library and respective manually defined schema
 class BGVertexJSONSchema(Schema):
 name = fields.String(required=True, attribute="name")
 v_id = fields.Int(required=True, attribute="json_id")
 _py__bg_vertex_json_schema = fields.String(attribute="json_schema_name")

 def make_object(self, data):
 try:
 return BGVertex(name=data["name"])
 except KeyError:
 raise ValueError("No `name` key in supplied json data for vertex deserialization")

 # a schema class based variable with json deserialization schema
 # must be updated in all heirs, as schema specific method `make_object` specifies the type of deserialized object
 json_schema = BGVertexJSONSchema()

 def __init__(self, name):
 self._name = None
 self.name = name

 @property
 def name(self):
 return str(self._name)

 @name.setter
 def name(self, value):
 self._name = value

 def __hash__(self):
 # all vertex are hashable objects and are uniquely defined by their name, thus a has value of vertex is just a hash value of its name
 return hash(self.name)

 def __eq__(self, other):
 # vertices are equal only if their class is equal as well as their names
 # in 99% of a time name is class specific and one can distinguish between vetices classes by only their names
 if not isinstance(other, BGVertex):
 return False
 return hash(self) == hash(other)

 def __ne__(self, other):
 return not self.__eq__(other=other)

 def __getattr__(self, item):
 # this class serves as a stopper for all calls in form is_*_vertex, which is designed to test some combinatorial propoerties of vertex
 # base class does not belong to any specific group and thus answers `False` for all such calls
 # the rest of lookups is forwarded to the "next in mro chain"
 if item.startswith("is_") and item.endswith("_vertex"):
 return False
 return super(BGVertex, self).__getattribute__(item)

 def __str__(self):
 return self.name

 @property
 def json_id(self):
 # a spicific vertex unique identifier that is utilized for aliasing vertices in json files (vertex might be references more than once), that is why
 # a reference to object by its json_id is used, rather than the full vertex object
 return hash(self)

 @property
 def json_schema_name(self):
 # each vertex is serialized with a help of some json schema (marshmallow powered), and information about such schema can be provided in
 # serialized vertex json object and further used to deserialized a vertex object into specific vertex class
 return self.json_schema.__class__.__name__

 def to_json(self, schema_info=True):
 # json serialization method that accounts for a possibility of excluding some schema specified fields from the result
 # also, since there are usually thousands of vertices serialized at the same time, no new schema object is created every time,
 # but rather some small monkey patching is performed with `exclude` field of json schema
 old_exclude_fields = self.json_schema.exclude
 new_exclude_fields = list(old_exclude_fields)
 if not schema_info:
 new_exclude_fields.append(BGVertex_JSON_SCHEMA_JSON_KEY)
 # monkey patch schema `exclude` attribute to ignore some fields in result json object
 self.json_schema.exclude = new_exclude_fields
 result = self.json_schema.dump(self).data
 # reverse the result of monkey patching
 self.json_schema.exclude = old_exclude_fields
 return result

 @classmethod
 def from_json(cls, data, json_schema_class=None):
 # deserialization from json is performed by internal machinery of `make_object` method, that is invoked transparently
 # specific json schema class can be specified and used for deserialization
 schema = cls.json_schema if json_schema_class is None else json_schema_class()
 return schema.load(data).data

 @staticmethod
 def get_vertex_class_from_vertex_name(string):
 # since every vertex even of different classes shall have a class specific `name` attribute, is is possible to distinguish between vertices classes
 # default value is BlockVertex, the most utilized vertex in the standard breakpoint graph
 if InfinityVertex.NAME_SUFFIX in string.split(BGVertex.NAME_SEPARATOR)[1:]:
 return TaggedInfinityVertex
 else:
 return TaggedBlockVertex

 @staticmethod
 def get_vertex_name_root(string):
 # as every vertex is represented by its name, some additional information about vertex class, type, etc. can be encoded into its name
 # such encoding is usually performed by appending some special suffixes to vertex name and utilizing `NAME_SEPARATOR` attribute
 return string.split(BGVertex.NAME_SEPARATOR)[0]

[docs]class BlockVertex(BGVertex):
 """ This class represents a special type of breakpoint graph vertex that correspond to a generic block extremity (gene/ synteny block/ etc.) """

[docs] class BlockVertexJSONSchema(BGVertex.BGVertexJSONSchema):
 """ JSON schema for this class is redefined to tune the `make_object` method, that shall return `BlockVertex` instance, rather than `BGVertex` one """

 def make_object(self, data):
 try:
 return BlockVertex(name=data["name"])
 except KeyError:
 raise ValueError("No `name` key in supplied json data for vertex deserialization")

 # a new JSON schema is initialized and set of be used for all instance of `VertexClass`
 json_schema = BlockVertexJSONSchema()

 def __init__(self, name, mate_vertex=None):
 super(BlockVertex, self).__init__(name=name)
 self.mate_vertex = mate_vertex

 @property
 def is_regular_vertex(self):
 """ This class implements a property check for vertex to belong to class of regular vertices """
 return True

 @property
 def block_name(self):
 if self.is_block_vertex:
 if self.is_tail_vertex or self.is_head_vertex:
 return self._name[:-1]
 else:
 return self._name

 @property
 def is_block_vertex(self):
 """ This class implements a property check for vertex to belong to a class of vertices, that correspond to extremities of genomic blocks"""
 return True

 @property
 def is_head_vertex(self):
 return self.is_block_vertex and self._name.endswith("h")

 @property
 def is_tail_vertex(self):
 return self.is_block_vertex and self._name.endswith("t")

 @classmethod
[docs] def from_json(cls, data, json_schema_class=None):
 """ This class overwrites the from_json method thus, making sure, that if `from_json` is called from this class instance, it will provide its JSON schema as a default one """
 json_schema = cls.json_schema if json_schema_class is None else json_schema_class()
 return super(BlockVertex, cls).from_json(data=data, json_schema_class=json_schema.__class__)

[docs]class InfinityVertex(BGVertex):
 """ This class represents a special type of breakpoint graph vertex that correspond to a generic extremity of genomic fragment (chromosome, scaffold, contig, etc.)"""

[docs] class InfinityVertexJSONSchema(BGVertex.BGVertexJSONSchema):
 """ JSON Schema for this class is redefined to tune the `make_object` method, that shall return `InfinityVertex` instance, rather than a `BGVertex` one """

 def make_object(self, data):
 try:
 json_name = data["name"]
 name = json_name.split(InfinityVertex.NAME_SUFFIX)[0]
 return InfinityVertex(name=name)
 except KeyError:
 raise ValueError("No `name` key in supplied json data for vertex deserialization")

 # InfinityVertex instances have a special suffix in their name that is determined by a class variable `NAME_SUFFIX`
 NAME_SUFFIX = "infinity"

 # a setup for a new JSON schema is performed class-wise to be utilized by all instance of InfinityVertex
 json_schema = InfinityVertexJSONSchema()

 def __init__(self, name):
 # current class allows for a standard access to the `name` attribute, but performs transparent computation behind the scenes
 # so the name is stored in a private variable __name, and property `name` is implemented
 super(InfinityVertex, self).__init__(name=name)

 @property
 def name(self):
 """ access to classic name attribute is hidden by this property """
 return self.NAME_SEPARATOR.join([super(InfinityVertex, self).name, self.NAME_SUFFIX])

 @name.setter
 def name(self, value):
 """When someone wants to set a new name for the `InfinityVertex` instance, it is transparently store into the `__name` attribute """
 self._name = value

 @property
 def is_irregular_vertex(self):
 """ This class implements a property check for vertex to belong to a class of vertices, that correspond to extremities of genomic fragments """
 return True

 @property
 def is_infinity_vertex(self):
 """ This class implements a property check for vertex to belong to a class of vertices, that correspond to standard extremities of genomic fragments """
 return True

 @classmethod
[docs] def from_json(cls, data, json_schema_class=None):
 """ This class overwrites the from_json method, thus making sure that if `from_json` is called from this class instance, it will provide its JSON schema as a default one"""
 schema = cls.json_schema if json_schema_class is None else json_schema_class()
 return super(InfinityVertex, cls).from_json(data=data, json_schema_class=schema.__class__)

class TaggedVertex(BGVertex):
 class TaggedVertexJSONSchema(BGVertex.BGVertexJSONSchema):

 def make_object(self, data):
 predefined_object_class = getattr(self, "object_class", None)
 object_class = TaggedVertex if predefined_object_class is None else predefined_object_class
 try:
 json_name = data["name"]
 split_name = json_name.split(TaggedVertex.NAME_SEPARATOR)
 root = split_name[0]
 tags = list(filter(lambda name_part: TaggedVertex.TAG_SEPARATOR in name_part, split_name[1:]))
 tags = [entry.split(TaggedVertex.TAG_SEPARATOR) for entry in tags]
 result = object_class(name=root)
 result.tags = sorted(tags)
 return result
 except KeyError:
 raise ValueError("No `name` key in supplied json data for vertex deserialization")

 TAG_SEPARATOR = ":"

 json_schema = TaggedVertexJSONSchema()

 def __init__(self, name):
 self.tags = []
 super(TaggedVertex, self).__init__(name=name)

 @property
 def is_tagged_vertex(self):
 return True

 @property
 def name(self):
 """ access to classic name attribute is hidden by this property """
 return self.NAME_SEPARATOR.join([super(TaggedVertex, self).name] + self.get_tags_as_list_of_strings())

 def get_tags_as_list_of_strings(self):
 return [self.TAG_SEPARATOR.join([str(tag), str(value)]) for tag, value in self.tags]

 @name.setter
 def name(self, value):
 """ shared "protected" variable for the name storing attribute """
 self._name = value

 def add_tag(self, tag, value):
 """ as tags are kept in a sorted order, a bisection is a fastest way to identify a correct position
 of or a new tag to be added. An additional check is required to make sure w don't add duplicates
 """
 index = bisect_left(self.tags, (tag, value))
 contains = False
 if index < len(self.tags):
 contains = self.tags[index] == (tag, value)
 if not contains:
 self.tags.insert(index, (tag, value))

 def __getattr__(self, item):
 """ """
 if item.startswith("is_") and item.endswith("_vertex"):
 tag = item[3:-7]
 index = bisect_left([tag_name for tag_name, _ in self.tags], tag)
 if index < len(self.tags):
 return self.tags[index][0] == tag
 return super(TaggedVertex, self).__getattr__(item)

 def remove_tag(self, tag, value, silent_fail=False):
 """ we try to remove supplied pair tag -- value, and if does not exist outcome depends on the silent_fail flag """
 try:
 self.tags.remove((tag, value))
 except ValueError as err:
 if not silent_fail:
 raise err

 @classmethod
 def from_json(cls, data, json_schema_class=None):
 """ This class overwrites the from_json method, thus making sure that if `from_json` is called from this class instance, it will provide its JSON schema as a default one"""
 schema = cls.json_schema if json_schema_class is None else json_schema_class()
 return super(TaggedVertex, cls).from_json(data=data, json_schema_class=schema.__class__)

class TaggedBlockVertex(BlockVertex, TaggedVertex):
 class TaggedBlockVertexJSONSchema(TaggedVertex.TaggedVertexJSONSchema, BlockVertex.BlockVertexJSONSchema):
 def make_object(self, data):
 setattr(self, "object_class", TaggedBlockVertex)
 return super(TaggedBlockVertex.TaggedBlockVertexJSONSchema, self).make_object(data)

 json_schema = TaggedBlockVertexJSONSchema()

class TaggedInfinityVertex(InfinityVertex, TaggedVertex):
 class TaggedInfinityVertexJSONSchema(TaggedVertex.TaggedVertexJSONSchema, InfinityVertex.InfinityVertexJSONSchema):
 def make_object(self, data):
 setattr(self, "object_class", TaggedInfinityVertex)
 return super(TaggedInfinityVertex.TaggedInfinityVertexJSONSchema, self).make_object(data)

 json_schema = TaggedInfinityVertexJSONSchema()

 © Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

_modules/bg/edge.html

 Navigation

 		
 index

 		
 modules |

 		bg 1.8 documentation »

 		Module code »

 Source code for bg.edge

-*- coding: utf-8 -*-
from marshmallow import Schema, fields

from bg.utils import dicts_are_equal, recursive_dict_update

__author__ = "Sergey Aganezov"
__email__ = "aganezov(at)gwu.edu"
__status__ = "production"

module wide constant utilized in JSON serialization to specify key for JSON schema info, if required
BGEdge_JSON_SCHEMA_JSON_KEY = "_py__bg_edge_json_schema"

[docs]class BGEdge(object):
 """ A wrapper class for edges in :class:`bg.breakpoint_graph.BreakpointGraph`

 Is not stored on its own in the :class:`bg.breakpoint_graph.BreakpointGraph`, but is rather can be supplied to work with and is returned if retrieval is performed.
 BGEdge represents an undirected edge, thus distinction between :attr:`BGEdge.vertex1` and :attr:`BGEdge.vertex2` attributes is just from identities perspective, not from the order perspective.

 This class supports th following attributes, that cary information about multi-color for this edge, as well as vertices, its is attached to:

 * :attr:`BGEdge.vertex1`: a first vertex to be utilized in :class:`bg.breakpoint_graph.BreakpointGraph`
 * :attr:`BGEdge.vertex2`: a second vertex to be utilized in :class:`bg.breakpoint_graph.BreakpointGraph`

 Main operations:

 * ``==``
 * :meth:`BGEdge.merge`: produces a new BGEdge with multi-color information being merged from them
 """

[docs] class BGEdgeJSONSchema(Schema):
 """ Marshmallow powered JSON schema used for serialization / deserialization of edge object """
 _py__bg_edge_json_schema = fields.String(attribute="json_schema_name")
 vertex1_id = fields.Int(attribute="vertex1_json_id", required=True)
 vertex2_id = fields.Int(attribute="vertex2_json_id", required=True)
 multicolor = fields.List(fields.Int, attribute="colors_json_ids", allow_none=False, required=True)

 def make_object(self, data):
 if "vertex1_json_id" not in data:
 raise ValueError("Error during edge serialization. \"vertex1_id\" key is not present in json object")
 vertex1 = data["vertex1_json_id"]
 if "vertex2_json_id" not in data:
 raise ValueError("Error during edge serialization. \"vertex2_id\" key is not present in json object")
 vertex2 = data["vertex2_json_id"]
 if "colors_json_ids" not in data:
 raise ValueError("Error during edge serialization. \"multicolor\" key is not present in json object")
 multicolor = data["colors_json_ids"]
 return BGEdge(vertex1=vertex1, vertex2=vertex2, multicolor=multicolor)

 # class wide variable for json serialization/deserialization. Created once for a whole class, as thousands of objects
 # undergo serialization / deserialization, and schema instantiation in each case would require additional resources
 json_schema = BGEdgeJSONSchema()

 @classmethod
 def create_default_data_dict(cls):
 return {
 "fragment": None,
 "origin": None
 }

[docs] def __init__(self, vertex1, vertex2, multicolor, data=None):
 """ Initialization of :class:`BGEdge` object.

 :param vertex1: vertex the edges is outgoing from
 :type vertex1: any hashable python object
 :param vertex2: vertex the edges is ingoing to
 :type vertex2: any hashable python object
 :param multicolor: multicolor that this single edge shall posses
 :type multicolor: :class:`bg.multicolor.Multicolor`
 :return: a new instance of :class:`BGEdge`
 :rtype: :class:`BGEdge`
 """
 self.vertex1 = vertex1
 self.vertex2 = vertex2
 self.multicolor = multicolor
 if data is None:
 data = self.create_default_data_dict()
 self.data = data

 @classmethod
[docs] def merge(cls, edge1, edge2):
 """ Merges multi-color information from two supplied :class:`BGEdge` instances into a new :class:`BGEdge`

 Since :class:`BGEdge` represents an undirected edge, created edge's vertices are assign according to the order in first supplied edge.

 Accounts for subclassing.

 :param edge1: first out of two edge information from which is to be merged into a new one
 :param edge2: second out of two edge information from which is to be merged into a new one
 :return: a new undirected with multi-color information merged from two supplied :class:`BGEdge` objects
 :raises: ``ValueError``
 """
 if edge1.vertex1 != edge2.vertex1 and edge1.vertex1 != edge2.vertex2:
 raise ValueError("Edges to be merged do not connect same vertices")
 forward = edge1.vertex1 == edge2.vertex1
 if forward and edge1.vertex2 != edge2.vertex2:
 raise ValueError("Edges to be merged do not connect same vertices")
 elif not forward and edge1.vertex2 != edge2.vertex1:
 raise ValueError("Edges to be merged do not connect same vertices")
 return cls(vertex1=edge1.vertex1, vertex2=edge1.vertex2, multicolor=edge1.multicolor + edge2.multicolor)

[docs] def __eq__(self, other):
 """ Implementation of ``==`` operation for :class:`BGEdge`

 Checks if current :class:`BGEdge` instance comply in terms of vertices set with the supplied :class:`BGEdge`, and then checks the equality of :attr:`BGEdge.multicolor` attributes in respective objects.
 :class:`BGEdge` does not equal to non-:class:`BGEdge` objects

 :param other: object to compare current :class:`BGEdge` to
 :type other: any python object
 :return: flag of equality if current :class:`BGEdge` object equals to the supplied one
 :rtype: ``Boolean``
 """
 if not isinstance(other, BGEdge):
 return False
 if self.vertex1 != other.vertex1 and self.vertex1 != other.vertex2:
 return False
 multicolor_equality = self.multicolor == other.multicolor
 data_equality = dicts_are_equal(dict1=self.data, dict2=other.data)
 if self.vertex1 == other.vertex1:
 return self.vertex2 == other.vertex2 and multicolor_equality and data_equality
 else:
 return self.vertex2 == other.vertex1 and multicolor_equality and data_equality

 def __getattr__(self, item):
 if item.startswith("is_") and item.endswith("_edge"):
 lookup = item[3:-5]
 vertex_lookup = "is_" + lookup + "_vertex"
 if getattr(self.vertex1, vertex_lookup) or getattr(self.vertex2, vertex_lookup):
 return True
 return False
 return super(BGEdge, self).__getattribute__(item)

 @property
 def json_schema_name(self):
 """ When genome is serialized information about JSON schema of such serialization can be recorded,
 and this property provides access to it
 """
 return self.json_schema.__class__.__name__

 @staticmethod
 def __vertex_json_id(vertex):
 """ A proxy property based access to vertices in current edge

 When edge is serialized to JSON object, no explicit object for its vertices are created, but rather they are referenced
 by special vertex json_ids.
 """
 if hasattr(vertex, "json_id"):
 return vertex.json_id
 return hash(vertex)

 @property
 def vertex1_json_id(self):
 """ First vertex json id access """
 return self.__vertex_json_id(self.vertex1)

 @property
 def vertex2_json_id(self):
 """ Second vertex json id access """
 return self.__vertex_json_id(self.vertex2)

 @property
 def colors_json_ids(self):
 """ A proxy property based access to vertices in current edge

 When edge is serialized to JSON object, no explicit object for its multicolor is created, but rather all colors,
 taking into account their multiplicity, are referenced by their json_ids.
 """
 return [color.json_id if hasattr(color, "json_id") else hash(color) for color in self.multicolor.multicolors.elements()]

[docs] def to_json(self, schema_info=True):
 """ JSON serialization method that accounts for a possibility of field filtration and schema specification """
 old_exclude_fields = self.json_schema.exclude
 new_exclude_fields = list(old_exclude_fields)
 if not schema_info:
 new_exclude_fields.append(BGEdge_JSON_SCHEMA_JSON_KEY)
 # monkey patch schema `exclude` attribute to ignore some fields in result json object
 self.json_schema.exclude = new_exclude_fields
 result = self.json_schema.dump(self).data
 # reverse the result of monkey patching
 self.json_schema.exclude = old_exclude_fields
 return result

 @classmethod
[docs] def from_json(cls, data, json_schema_class=None):
 """ JSON deserialization method that retrieves edge instance from its json representation

 If specific json schema is provided, it is utilized, and if not, a class specific is used
 """
 schema = cls.json_schema if json_schema_class is None else json_schema_class()
 return schema.load(data).data

 def update_data(self, source):
 if not isinstance(source, dict):
 raise ValueError()
 recursive_dict_update(self.data, source)

 © Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

_modules/bg/multicolor.html

 Navigation

 		
 index

 		
 modules |

 		bg 1.8 documentation »

 		Module code »

 Source code for bg.multicolor

-*- coding: utf-8 -*-
from collections import Counter
from copy import deepcopy

__author__ = "Sergey Aganezov"
__email__ = "aganezov(at)gwu.edu"
__status__ = "production"

[docs]class Multicolor(object):
 """ Class providing implementation of multi-color notion for edges in :class:`bg.breakpoint_graph.BreakpointGraph`.

 Multi-color is a specific property of edges in Breakpoint Graph combinatorial object which represents similar adjacencies between genomic material in multiple genomes.

 This class supports the following attributes, that carry information colors and their multiplicity of edges in :class:`bg.breakpoint_graph.BreakpointGraph`.

 * :attr:`Multicolor.multicolors`: a python Counter object which contains information about colors and their multiplicity for a given :class:`Multicolor` instance
 * :attr:`Multicolor.colors`: a property attribute providing a set of colors in :attr:`Multicolor.multicolors` attribute, hiding information about colors multiplicity

 Main operations:

 * ``+``, ``-``, ``+=``, ``-=``, ``==``, ``>``, ``>=``, ``<``, ``<=``
 * :meth:`Multicolor.update`: updates information in :attr:`Multicolor.multicolors` attribute of respective instance
 * :meth:`Multicolor.merge`: creates a new :class:`Multicolor` object out of a list of provided :class:`Multicolor` objects, gathering respective information about colors and their multiplicity
 * :meth:`Multicolor.left_merge`: updates respective :class:`Multicolor` instance with information from supplied :class:`Multicolor` object
 * :meth:`Multicolor.delete`: reduces information in respective instance :attr:`Multicolor.multicolors` attribute by iterating over supplied data
 * :meth:`Multicolor.similarity_score` computes how similar two supplied :class:`Multicolor` object are
 * :meth:`Multicolor.split_colors` produces several new instances of :class:`Multicolor` object by splitting information about colors by using provided guidance iterable set-like object
 """

[docs] def __init__(self, *args):
 """ Initialization of :class:`Multicolor` object.

 Initialization is performed by supplied variable number of colors, that respective :class:`Multicolor` object must contain information about Multiplicity of each color is determined by the number of times it occurs as argument in initialization process.

 :param args: variable number of colors to contain information about
 :type args: any hashable python object
 :return: a new instance of :class:`Multicolor`
 :rtype: :class:`Multicolor`
 """
 self.multicolors = Counter(arg for arg in args)

[docs] def update(self, *args):
 """ Updates information about colors and their multiplicity in respective :class:`Multicolor` instance.

 By iterating over supplied arguments each of which should represent a color object, updates information about colors and their multiplicity in current :class:`Multicolor` instance.

 :param args: variable number of colors to add to currently existing multi colors data
 :type args: any hashable python object
 :return: ``None``, performs inplace changes to :attr:`Multicolor.multicolors` attribute
 """
 self.multicolors = self.multicolors + Counter(arg for arg in args)

 @classmethod
[docs] def left_merge(cls, multicolor1, multicolor2):
 """ Updates first supplied :class:`Multicolor` instance with information from second supplied :class:`Multicolor` instance.

 Works as proxy to respective call to private static method :meth:`Multicolor._Multicolor__left_merge` for purposes of inheritance compatibility.

 Accounts for subclassing.

 :param multicolor1: instance to update information in
 :type multicolor1: :class:`Multicolor`
 :param multicolor2: instance to use information for update from
 :type multicolor2: :class:`Multicolor`
 :return: updated first supplied :class:`Multicolor` instance
 :rtype: :class:`Multicolor`
 """
 return cls.__left_merge(multicolor1, multicolor2)

 @classmethod
[docs] def merge(cls, *multicolors):
 """ Produces a new :class:`Multicolor` object resulting from gathering information from all supplied :class:`Multicolor` instances.

 Works as proxy to respective call to private static method :meth:`Multicolor._Multicolor__merge` for purposes of inheritance compatibility.

 :param multicolors: variable number of :class:`Multicolor` objects
 :type multicolors: :class:`Multicolor`
 :return: object containing gathered information from all supplied arguments
 :rtype: :class:`Multicolor`
 """
 return cls.__merge(*multicolors)

[docs] def delete(self, multicolor):
 """ Reduces information :class:`Multicolor` attribute by iterating over supplied colors data.

 Works as proxy to respective call to private static method :meth:`Multicolor._Multicolor__delete` for purposes of inheritance compatibility.

 :param multicolor: information about colors to be deleted from :class:`Multicolor` object
 :type multicolor: any iterable with colors object as entries or :class:`Multicolor`
 :return: ``None``, performs inplace changes
 """
 self.__delete(multicolor)

 def __delete(self, multicolor):
 """ Reduces information :class:`Multicolor` attribute by iterating over supplied colors data.

 In case supplied argument is a :class:`Multicolor` instance, multi-color specific information to de deleted is set to its :attr:`Multicolor.multicolors`.
 In other cases multi-color specific information to de deleted is obtained from iterating over the argument.

 Colors and their multiplicity is reduces with a help of ``-`` method of python Counter object.

 :param multicolor: information about colors to be deleted from :class:`Multicolor` object
 :type multicolor: any iterable with colors object as entries or :class:`Multicolor`
 :return: ``None``, performs inplace changes
 """
 if isinstance(multicolor, Multicolor):
 to_delete = multicolor.multicolors
 else:
 to_delete = Counter(color for color in multicolor)
 self.multicolors = self.multicolors - to_delete

 @classmethod
 def __merge(cls, *multicolors):
 """ Produces a new :class:`Multicolor` object resulting from gathering information from all supplied :class:`Multicolor` instances.

 New :class:`Multicolor` is created and its :attr:`Multicolor.multicolors` attribute is updated with similar attributes of supplied :class:`Multicolor` objects.

 Accounts for subclassing.

 :param multicolors: variable number of :class:`Multicolor` objects
 :type multicolors: :class:`Multicolor`
 :return: object containing gathered information from all supplied arguments
 :rtype: :class:`Multicolor`
 """
 result = cls()
 for multicolor in multicolors:
 result.multicolors = result.multicolors + multicolor.multicolors
 return result

 @staticmethod
 def __left_merge(multicolor1, multicolor2):
 """ Updates first supplied :class:`Multicolor` instance with information from second supplied :class:`Multicolor` instance.

 First supplied instances attribute :attr:`Multicolor.multicolors` is updated with a help of ``+`` method of python Counter object.

 :param multicolor1: instance to update information in
 :type multicolor1: :class:`Multicolor`
 :param multicolor2: instance to use information for update from
 :type multicolor2: :class:`Multicolor`
 :return: updated first supplied :class:`Multicolor` instance
 :rtype: :class:`Multicolor`
 """
 multicolor1.multicolors = multicolor1.multicolors + multicolor2.multicolors
 return multicolor1

 @staticmethod
[docs] def similarity_score(multicolor1, multicolor2):
 """ Computes how similar two :class:`Multicolor` objects are from perspective of information, that they contain.

 Two multicolors are called to be similar if they contain same colors (at least one). Multiplicity of colors is taken into account as well.

 :param multicolor1: first out of two multi-colors to compute similarity between
 :type multicolor1: :class:`Multicolor`
 :param multicolor2: second out of two multi-colors to compute similarity between
 :type multicolor2: :class:`Multicolor`
 :return: the similarity score between two supplied :class:`Multicolor` object
 :rtype: ``int``
 """
 result = 0
 for key, value in multicolor1.multicolors.items():
 if key in multicolor2.multicolors:
 result += min(value, multicolor2.multicolors[key])
 return result

 @classmethod
[docs] def split_colors(cls, multicolor, guidance=None, sorted_guidance=False,
 account_for_color_multiplicity_in_guidance=True):
 """ Produces several new instances of :class:`Multicolor` object by splitting information about colors by using provided guidance iterable set-like object.

 Guidance is an iterable type of object where each entry has information about groups of colors that has to be separated for current :attr:`Multicolor.multicolors` chunk.
 If no Guidance is provided, single-color guidance of :attr:`Multicolor.multicolors` is created.
 Guidance object is first reversed sorted to iterate over it from larges color set to the smallest one, as small color sets might be subsets of bigger ones, and shall be utilized only if bigger sets didn't help in separating.

 During the first iteration over the guidance information all subsets of :attr:`Multicolor.multicolors` that equal to entries of guidance are recorded.
 During second iteration over remaining of the guidance information, if colors in :attr:`Multicolor.multicolors` form subsets of guidance entries, such instances are recorded.
 After this two iterations, the rest of :attr:`Multicolor.multicolors` is recorded as non-tackled and is recorded on its own.

 Multiplicity of all separated colors in respective chunks is preserved.

 Accounts for subclassing.

 :param multicolor: an instance information about colors in which is to be split
 :type multicolor: :class:`Multicolor`
 :param guidance: information how colors have to be split in current :class:`Multicolor` object
 :type guidance: iterable where each entry is iterable with colors entries
 :param sorted_guidance: a flag, that indicates is sorting of provided guidance is in order
 :return: a list of new :class:`Multicolor` object colors information in which complies with guidance information
 :rtype: ``list`` of :class:`Multicolor` objects
 """
 if guidance is None:
 ###
 #
 # if guidance is not specified, it will be derived from colors in the targeted multicolor
 # initially the multiplicity of colors remains as is
 #
 ###
 guidance = [Multicolor(*(color for _ in range(multicolor.multicolors[color]))) for color in multicolor.colors]
 ###
 #
 # since at this we have a single-colored (maybe with multiplicity greater than 1)
 # we don't need to sort anything, as there will be no overlapping multicolor in guidance
 #
 ###
 sorted_guidance = True
 ###
 #
 # a reference to the targeted multicolor.
 # such reference is created only for the future requirement to access information about original multicolor
 # Is done for the sake of code clarity and consistency.
 #
 ###
 splitting_multicolor = deepcopy(multicolor)
 if not account_for_color_multiplicity_in_guidance:
 ###
 #
 # we need to create a new guidance (even if original is perfect)
 # a new one shall preserve the order of the original, but all multicolors in it
 # while keeping information about the actual colors itself, shall have multiplicity equal to 1
 #
 ###
 splitting_multicolor = Multicolor(*multicolor.colors)
 colors_guidance = [Multicolor(*tmp_multicolor.colors) for tmp_multicolor in guidance]
 ###
 #
 # since there might be different multicolors, with the same colors content
 # and they will be changed to same multicolors object, after colors multiplicity adjustment
 # we need, while preserving the order, leave only unique ones in (the first appearance)
 #
 ###
 unique = set()
 guidance = []
 for c_multicolor in colors_guidance:
 if c_multicolor.hashable_representation not in unique:
 unique.add(c_multicolor.hashable_representation)
 guidance.append(c_multicolor)
 if not sorted_guidance:
 ###
 #
 # if arguments in function call do not specify explicitly, that the guidance shall be used "as is"
 # it is sorted to put "bigger" multicolors in front, and smaller at the back
 # as bigger multicolor might contain several smaller multicolors from the guidance, but the correct splitting
 # always assumes that the smaller is the splitted result, the better it is
 # and such minimization can be obtained only if the biggest chunk of targeted multicolor are ripped off of it first
 #
 ###
 guidance = sorted({g_multicolor.hashable_representation for g_multicolor in guidance},
 key=lambda g_multicolor: len(g_multicolor),
 reverse=True)
 guidance = [Multicolor(*hashed) for hashed in guidance]
 first_run_result = []
 second_run_result = []
 for g_multicolor in guidance:
 ###
 #
 # first we determine which multicolors in guidance are fully present in the multicolor to split
 # "<=" operator can be read as "is_multi_subset_of"
 # and retrieve as many copies of it from the multicolor, as we can
 # Example:
 # multicolor has only one color "blue" with multiplicity "4"
 # in guidance we have multicolor with color "blue" with multiplicity "2"
 # we must retrieve it fully twice
 #
 ###
 ###
 #
 # empty guidance multicolors shall be ignored, as they have no impact on the splitting algorithm
 #
 ###
 if len(g_multicolor.colors) == 0:
 continue
 while g_multicolor <= splitting_multicolor:
 first_run_result.append(g_multicolor)
 splitting_multicolor -= g_multicolor
 for g_multicolor in guidance:
 ###
 #
 # secondly we determine which multicolors in guidance are partially present in the multicolor
 # NOTE that this is not possible for the case of tree consistent multicolor
 # as every partially present
 #
 ###
 while len(g_multicolor.intersect(splitting_multicolor).multicolors) > 0:
 second_run_result.append(g_multicolor.intersect(splitting_multicolor))
 splitting_multicolor -= g_multicolor.intersect(splitting_multicolor)
 appendix = splitting_multicolor
 result = deepcopy(first_run_result) + deepcopy(second_run_result) + deepcopy([appendix] if len(appendix.multicolors) > 0 else [])
 if not account_for_color_multiplicity_in_guidance:
 ###
 #
 # if we didn't care for guidance multicolors colors multiplicity, we we splitting a specially created Multicolor
 # based only on the colors content.
 # After this is done, we need to restore the original multiplicity of each color in result multicolors to the
 # count they had in the targeted for splitting multicolor.
 # This is possible since in the case when we do not account for colors multiplicity in guidance, we have
 # splitting_color variable referencing not the supplied multicolor, and thus internal changes are not made to
 # supplied multicolor.
 #
 ###
 for r_multicolor in result:
 for color in r_multicolor.colors:
 r_multicolor.multicolors[color] = multicolor.multicolors[color]
 return result

[docs] def __sub__(self, other):
 """ Implementation of ``-`` operation for :class:`Multicolor`

 Creates a new :class:`Multicolor` instance by cloning current :class:`Multicolor` object and updating its :attr:`Multicolor.multicolors` attribute information by deleting multi-colors in supplied :class:`Multicolor` object.

 :param other: object, whose multi-color information to subtract form current one
 :type other: :class:`Multicolor`
 :return: new :class:`Multicolor` object, colors in which and their multiplicity result from subtracting of current :attr:`Multicolor.multicolors` and supplied :class:`Multicolor.multicolors` attributes.
 :rtype: :class:`Multicolor`
 :raises: ``TypeError``, if not :class:`Multicolor` instance is supplied
 """
 if not isinstance(other, Multicolor):
 raise TypeError
 result = Multicolor(*(color for color in self.multicolors.elements()))
 result.__delete(other)
 return result

[docs] def __isub__(self, other):
 """ Implementation of ``-`` operation for :class:`Multicolor`

 Updates current :class:`Multicolor` instance by updating its :attr:`Multicolor.multicolors` attribute information by deleting multi-colors in supplied :attr:`Multicolor.multicolors` attribute.
 Utilizes ``-`` method of python Counter

 :param other: object, whose multi-color information to subtract form current one
 :type other: :class:`Multicolor`
 :return: updated current :class:`Multicolor` object
 :rtype: :class:`Multicolor`
 :raises: ``TypeError``, if not :class:`Multicolor` instance is supplied
 """
 if not isinstance(other, Multicolor):
 raise TypeError
 self.multicolors = self.multicolors - other.multicolors
 return self

[docs] def __add__(self, other):
 """ Implementation of ``+`` operation for :class:`Multicolor`

 Invokes a private :meth:`Multicolor._Multicolor__merge` method to implement addition of two :class:`Multicolor` instances.

 :param other: object, whose multi-color information has to be added to current one
 :type other: :class:`Multicolor`
 :return: new :class:`Multicolor` object, colors in which and their multiplicity result from addition of current :attr:`Multicolor.multicolors` and supplied :attr:`Multicolor.multicolors`
 :rtype: :class:`Multicolor`
 :raises: ``TypeError``, if not :class:`Multicolor` instance is provided
 """
 if not isinstance(other, Multicolor):
 raise TypeError
 return Multicolor.__merge(self, other)

[docs] def __iadd__(self, other):
 """ Implementation of ``+=`` operation for :class:`Multicolor`

 Invokes a private :meth:`Multicolor._Multicolor__merge` method to implement addition of two :class:`Multicolor` instances.

 :param other: object, whose multi-color information has to be added to current one
 :type other: :class:`Multicolor`
 :return: new :class:`Multicolor` object, colors in which and their multiplicity result from addition of current :attr:`Multicolor.multicolors` and supplied :attr:`Multicolor.multicolors`
 :rtype: :class:`Multicolor`
 :raises: ``TypeError``, if not :class:`Multicolor` instance is provided
 """
 if not isinstance(other, Multicolor):
 raise TypeError
 return Multicolor.__left_merge(self, other)

[docs] def __eq__(self, other):
 """ Implementation of ``==`` operation for :class:`Multicolor`

 Two :class:`Multicolor` objects are called to be equal if colors that both of them contain and respective colors multiplicity are equal.
 :class:`Multicolor` instance never equals to non-:class:`Multicolor` object.
 Performs :attr:`Multicolor.multicolors` comparison with a help of ``==`` method of python Counter object.

 :param other: an object to compare to
 :type other: any python object
 :return: a flag of equality between current :class:`Multicolor` instance and supplied object
 :rtype: ``Boolean``
 """
 if not isinstance(other, Multicolor):
 return False
 return self.multicolors == other.multicolors

[docs] def __lt__(self, other):
 """ Implementation of ``<`` operation for :class:`Multicolor`

 One :class:`Multicolor` instance is said to be "less than" the other :class:`Multicolor` instance, if it contains less or equal number of colors colors,
 as the other :class:`Multicolor` object does, and multiplicity of all of them is less or equal than in the other multicolor,
 and at least one color has multiplicity less, than in the other multicolor.
 :class:`Multicolor` instance is never less, than non-:class:`Multicolor` object.

 :param other: an object to compare to
 :type other: any python object
 :return: a flag if current :class:`Multicolor` object is less than supplied object
 :rtype: ``Boolean``
 """
 if not isinstance(other, Multicolor):
 return False
 self_keys = self.colors
 other_keys = other.colors
 return all(self.multicolors[key] <= other.multicolors[key] for key in self_keys) and \
 self_keys <= other_keys and \
 any(self.multicolors[key] < other.multicolors[key] for key in self_keys)

[docs] def __le__(self, other):
 """ Implementation of "<=" operation for :class:`Multicolor`

 One :class:`Multicolor` instance is said to be "less or equal than" the other :class:`Multicolor` instance, if it contains less or equal number colors,
 as the other :class:`Multicolor` object does, and multiplicity of all of them is less or equal than in the other multicolor.
 :class:`Multicolor` instance is never less or equal, than non-:class:`Multicolor` object.

 :param other: an object to compare to
 :type other: any python object
 :return: a flag if current :class:`Multicolor` object is less or equal than supplied object
 :rtype: ``Boolean``
 """
 if not isinstance(other, Multicolor):
 return False
 self_keys = self.colors
 other_keys = other.colors
 return all(self.multicolors[key] <= other.multicolors[key] for key in self_keys) and self_keys <= other_keys

[docs] def __gt__(self, other):
 """ Implementation of ``>`` operation for :class:`Multicolor`

 One :class:`Multicolor` instance is said to be "greater than" the other :class:`Multicolor` instance, if it contains greater os equal number of colors,
 as the other :class:`Multicolor` object does, and multiplicity of all of them is greater or equal than in the other multicolor,
 and at least one color has multiplicity greater, than in the other multicolor.
 :class:`Multicolor` instance is never less, than non-:class:`Multicolor` object.

 :param other: an object to compare to
 :type other: any python object
 :return: a flag if current :class:`Multicolor` object is less than supplied object
 :rtype: ``Boolean``
 """
 if not isinstance(other, Multicolor):
 return False
 self_keys = self.colors
 other_keys = other.colors
 return any(self.multicolors[key] > other.multicolors[key] for key in self_keys) and \
 self_keys >= other_keys and \
 all(self.multicolors[key] >= other.multicolors[key] for key in self_keys)

[docs] def __ge__(self, other):
 """ Implementation of ">=" operation for :class:`Multicolor`

 One :class:`Multicolor` instance is said to be "greater than" the other :class:`Multicolor` instance, if it contains greater or equal number of colors,
 as the other :class:`Multicolor` object does, and multiplicity of all of them is greater or equal than in the other multicolor.
 :class:`Multicolor` instance is never less, than non-:class:`Multicolor` object.

 :param other: an object to compare to
 :type other: any python object
 :return: a flag if current :class:`Multicolor` object is greater or equal than supplied object
 :rtype: ``Boolean``
 """
 if not isinstance(other, Multicolor):
 return False
 self_keys = self.colors
 other_keys = other.colors
 return all(self.multicolors[key] >= other.multicolors[key] for key in self_keys) and self_keys >= other_keys

 @property
 def colors(self):
 """ Implements an "attribute" like object to access information about colors only, hiding information about their multiplicity.

 Creates a fresh set object every time is accessed.

 :return: all colors that current :class:`Multicolor` object contains information about.
 :rtype: ``set``
 """
 return set(self.multicolors.keys())

 @property
 def hashable_representation(self):
 """ For a sake of speed check for multicolor presence, each multicolor has a deterministic hashable representation """
 return tuple(sorted(self.multicolors.elements()))

[docs] def __mul__(self, other):
 """ Multicolor can be multiplied by a number and it multiplies multiplicity of each present color respectively

 :param other: an integer multiplier
 :return: a new multicolor object resulted from multiplying each colors multiplicity by the multiplier
 """
 if not isinstance(other, int) or other < 0:
 raise TypeError("Multicolor can be multiplied only by integer values")
 if other == 0:
 return Multicolor()
 result = deepcopy(self)
 for value in result.multicolors:
 result.multicolors[value] *= other
 return result

[docs] def intersect(self, other):
 """ Computes the multiset intersection, between the current Multicolor and the supplied Multicolor

 :param other: another Multicolor object to compute a multiset intersection with
 :return:
 :raise TypeError: an intersection can be computed only between two Multicolor objects
 """
 if not isinstance(other, Multicolor):
 raise TypeError("Multicolor can be intersected only with another Multicolor object")
 intersection_colors_core = self.colors.intersection(other.colors)
 colors_count = {color: min(self.multicolors[color], other.multicolors[color]) for color in intersection_colors_core}
 return Multicolor(*(color for color in colors_count for _ in range(colors_count[color])))

 © Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

_modules/bg/breakpoint_graph.html

 Navigation

 		
 index

 		
 modules |

 		bg 1.8 documentation »

 		Module code »

 Source code for bg.breakpoint_graph

-*- coding: utf-8 -*-
import itertools
from copy import deepcopy

import networkx as nx
from networkx import MultiGraph

from bg.edge import BGEdge, BGEdge_JSON_SCHEMA_JSON_KEY
from bg.genome import BGGenome, BGGenome_JSON_SCHEMA_JSON_KEY
from bg.kbreak import KBreak
from bg.multicolor import Multicolor
from bg.utils import get_from_dict_with_path, merge_fragment_edge_data, recursive_dict_update
from bg.vertices import BGVertex_JSON_SCHEMA_JSON_KEY, BlockVertex, BGVertex, InfinityVertex, TaggedInfinityVertex, \
 TaggedBlockVertex, TaggedVertex

__author__ = "Sergey Aganezov"
__email__ = "aganezov(at)gwu.edu"
__status__ = "production"

[docs]class BreakpointGraph(object):
 """ Class providing implementation of breakpoint graph data structure and most utilized operations on it.

 :class:`BreakpointGraph` anticipates to work with :class:`bg.vertex.BGVertex`, :class:`bg.edge.BGEdge` and :class:`bg.multicolor.Multicolor` classes instances, but is not limited to them. Extreme caution has to be assumed when working with non-expected classes.

 The engine of graph information storage, low-level algorithms implementation is powered by NetworkX package MultiGraph data structure. This class provides a smart wrapping around it to perform most useful, from combinatorial bioinformatics stand point, operations and manipulations.

 Class carries following attributes carrying information about graphs structure:

 * :attr:`BreakpointGraph.bg`: instance of NetworkX MultiGraph class

 Main operations:

 * :meth:`BreakpointGraph.add_bgedge`: adds an instance of :class:`bg.edge.BGEdge` to the current :class:`BreakpointGraph`
 * :meth:`BreakpointGraph.add_edge`: adds a new :class:`bg.edge.BGEdge`, constructed from a pair of supplied vertices instances and :class:`bg.multicolor.Multicolor` object, to the current :class:`BreakpointGraph`
 * :meth:`BreakpointGraph.get_vertex_by_name`: returns a :class:`bg.vertex.BGVertex` instance by provided ``name`` argument
 * :meth:`BreakpointGraph.get_edge_by_two_vertices`: returns a first edge (order is determined by ``key`` NetworkX MultiGraph edge attribute) between two supplied :class:`bg.vertex.BGVertex`
 * :meth:`BreakpointGraph.get_edges_by_vertex`: returns a generator yielding :class:`bg.edge.BGEdge`
 * :meth:`BreakpointGraph.edges_between_two_vertices`: returns a generator yielding :class:`bg.edge.BGEdge` between two supplied vertices
 * :meth:`BreakpointGraph.connected_components_subgraphs`: returns a generator of :class:`BreakpointGraph` object, that represent connected components of a current :class:`BreakpointGraph` object, deep copying(by default) all information of current :class:`BreakpointGraph`
 * :meth:`BreakpointGraph.delete_edge`: deletes and edge from perspective of multi-color substitution of supplied vertices
 * :meth:`BreakpointGraph.delete_bgedge`: deletes a supplied :class:`bg.edge.BGEdge` instance from perspective of substituting multi-colors.
 * :meth:`BreakpointGraph.split_edge`: deletes a supplied :class:`bg.multicolor.Multicolor` instance in identifies edge from two supplied vertices.
 * :meth:`BreakpointGraph.split_bgedge`: splits a :class:`bg.edge.BGEdge` with respect to provided guidance
 * :meth:`BreakpointGraph.split_all_edges_between_two_vertices`: splits all edges between two supplied vertives with respect to provided guidance.
 * :meth:`BreakpointGraph.split_all_edges`: splits all edge in :class:`BreakpointGraph` with respect to provided guidance.
 * :meth:`BreakpointGraph.delete_all_edges_between_two_vertices`: deletes all edges between two given vertices, by plain deleting them from MultiGraph underling structure.
 * :meth:`BreakpointGraph.merge_all_edges_between_two_vertices`: merges all edge between two given vertices creating a single edge containing information about multi-colors in respective edges.
 * :meth:`BreakpointGraph.merge_all_edges`: merges all edges in current :class:`BreakpointGraph`.
 * :meth:`BreakpointGraph.merge`: merges two :class:`BreakpointGraph` instances with respect to vertices, edges, and multicolors.
 * :meth:`BreakpointGraph.update`: updates information in current :class:`BreakpointGraph` instance by adding new :class:`bg.edge.BGEdge` instances form supplied :class:`BreakpointGraph`.
 """

 # class wide variables that are utilized in json deserialization process, when various types of vertices are obtained and processed
 # each deserialized class has a schema resolution dict specified below, and this dict can be updated on the fly, to specify more JSON schemas
 genomes_json_schemas = {"BGGenomeJSONSchema": BGGenome.BGGenomeJSONSchema}
 edges_json_schemas = {"BGEdgeJSONSchema": BGEdge.BGEdgeJSONSchema}
 vertices_json_schemas = {"BGVertexJSONSchema": BGVertex.BGVertexJSONSchema,
 "BlockVertexJSONSchema": BlockVertex.BlockVertexJSONSchema,
 "InfinityVertexJSONSchema": InfinityVertex.InfinityVertexJSONSchema,
 "TaggedVertexJSONSchema": TaggedVertex.TaggedVertexJSONSchema,
 "TaggedBlockVertexJSONSchema": TaggedBlockVertex.TaggedBlockVertexJSONSchema,
 "TaggedInfinityVertexJSONSchema": TaggedInfinityVertex.TaggedInfinityVertexJSONSchema}

[docs] def __init__(self, graph=None):
 """ Initialization of a :class:`BreakpointGraph` object.

 :param graph: is supplied, :class:`BreakpointGraph` is initialized with supplied or brand new (empty) instance of NetworkX MultiGraph.
 :type graph: instance of NetworkX MultiGraph is expected.
 """
 self.cache = {}
 self.cache_valid = {}
 if graph is None:
 self.bg = MultiGraph()
 else:
 self.bg = graph

 def __edges(self, nbunch=None, keys=False):
 """ Iterates over edges in current :class:`BreakpointGraph` instance.

 Returns a generator over the edges in current :class:`BreakpointGraph` instance producing instances of :class:`bg.edge.BGEdge` instances wrapping around information in underlying MultiGraph object.

 :param nbunch: a vertex to iterate over edges outgoing from, if not provided,iteration over all edges is performed.
 :type nbuch: any hashable python object
 :param keys: a flag to indicate if information about unique edge's ids has to be returned alongside with edge
 :type keys: ``Boolean``
 :return: generator over edges in current :class:`BreakpointGraph`
 :rtype: ``generator``
 """
 for v1, v2, key, data in self.bg.edges_iter(nbunch=nbunch, data=True, keys=True):
 bgedge = BGEdge(vertex1=v1, vertex2=v2, multicolor=data["multicolor"], data=data["data"])
 if not keys:
 yield bgedge
 else:
 yield bgedge, key

[docs] def edges(self, nbunch=None, keys=False):
 """ Iterates over edges in current :class:`BreakpointGraph` instance.

 Proxies a call to :meth:`BreakpointGraph._BreakpointGraph__edges`.

 :param nbunch: a vertex to iterate over edges outgoing from, if not provided,iteration over all edges is performed.
 :type nbuch: any hashable python object
 :param keys: a flag to indicate if information about unique edge's ids has to be returned alongside with edge
 :type keys: ``Boolean``
 :return: generator over edges in current :class:`BreakpointGraph`
 :rtype: ``generator``
 """
 for entry in self.__edges(nbunch=nbunch, keys=keys):
 yield entry

[docs] def nodes(self):
 """ Iterates over nodes in current :class:`BreakpointGraph` instance.

 :return: generator over nodes (vertices) in current :class:`BreakpointGraph` instance.
 :rtype: ``generator``
 """
 for entry in self.bg.nodes_iter():
 yield entry

[docs] def add_edge(self, vertex1, vertex2, multicolor, merge=True, data=None):
 """ Creates a new :class:`bg.edge.BGEdge` object from supplied information and adds it to current instance of :class:`BreakpointGraph`.

 Proxies a call to :meth:`BreakpointGraph._BreakpointGraph__add_bgedge` method.

 :param vertex1: first vertex instance out of two in current :class:`BreakpointGraph`
 :type vertex1: any hashable object
 :param vertex2: second vertex instance out of two in current :class:`BreakpointGraph`
 :type vertex2: any hashable object
 :param multicolor: an information about multi-colors of added edge
 :type multicolor: :class:`bg.multicolor.Multicolor`
 :param merge: a flag to merge supplied information from multi-color perspective into a first existing edge between two supplied vertices
 :type merge: ``Boolean``
 :return: ``None``, performs inplace changes
 """
 self.__add_bgedge(BGEdge(vertex1=vertex1, vertex2=vertex2, multicolor=multicolor, data=data), merge=merge)

 def __add_bgedge(self, bgedge, merge=True):
 """ Adds supplied :class:`bg.edge.BGEdge` object to current instance of :class:`BreakpointGraph`.

 Checks that vertices in supplied :class:`bg.edge.BGEdge` instance actually are present in current :class:`BreakpointGraph` if **merge** option of provided. Otherwise a new edge is added to the current :class:`BreakpointGraph`.

 :param bgedge: instance of :class:`bg.edge.BGEdge` infromation form which is to be added to current :class:`BreakpointGraph`
 :type bgedge: :class:`bg.edge.BGEdge`
 :param merge: a flag to merge supplied information from multi-color perspective into a first existing edge between two supplied vertices
 :type merge: ``Boolean``
 :return: ``None``, performs inplace changes
 """
 if bgedge.vertex1 in self.bg and bgedge.vertex2 in self.bg[bgedge.vertex1] and merge:
 key = min(self.bg[bgedge.vertex1][bgedge.vertex2].keys())
 self.bg[bgedge.vertex1][bgedge.vertex2][key]["multicolor"] += bgedge.multicolor
 self.bg[bgedge.vertex1][bgedge.vertex2][key]["data"] = {}
 else:
 self.bg.add_edge(u=bgedge.vertex1, v=bgedge.vertex2, attr_dict={"multicolor": deepcopy(bgedge.multicolor),
 "data": bgedge.data})
 self.cache_valid["overall_set_of_colors"] = False

[docs] def add_bgedge(self, bgedge, merge=True):
 """ Adds supplied :class:`bg.edge.BGEdge` object to current instance of :class:`BreakpointGraph`.

 Proxies a call to :meth:`BreakpointGraph._BreakpointGraph__add_bgedge` method.

 :param bgedge: instance of :class:`bg.edge.BGEdge` infromation form which is to be added to current :class:`BreakpointGraph`
 :type bgedge: :class:`bg.edge.BGEdge`
 :param merge: a flag to merge supplied information from multi-color perspective into a first existing edge between two supplied vertices
 :type merge: ``Boolean``
 :return: ``None``, performs inplace changes
 """
 self.__add_bgedge(bgedge=bgedge, merge=merge)

 def __get_vertex_by_name(self, vertex_name):
 """ Obtains a vertex object by supplied label

 Returns a :class:`bg.vertex.BGVertex` or its subclass instance

 :param vertex_name: a vertex label it is identified by.
 :type vertex_name: any hashable python object. ``str`` expected.
 :return: vertex with supplied label if present in current :class:`BreakpointGraph`, ``None`` otherwise
 """
 vertex_class = BGVertex.get_vertex_class_from_vertex_name(vertex_name)
 data = vertex_name.split(BlockVertex.NAME_SEPARATOR)
 root_name, data = data[0], data[1:]
 if issubclass(vertex_class, TaggedVertex):
 tags = [entry.split(TaggedVertex.TAG_SEPARATOR) for entry in data]
 for tag_entry in tags:
 if len(tag_entry) == 1:
 tag_entry.append(None)
 elif len(tag_entry) > 2:
 tag_entry[1:] = [TaggedVertex.TAG_SEPARATOR.join(tag_entry[1:])]
 result = vertex_class(root_name)
 for tag, value in tags:
 if tag == InfinityVertex.NAME_SUFFIX and issubclass(vertex_class, InfinityVertex):
 continue
 result.add_tag(tag, value)
 else:
 result = vertex_class(root_name)

 if result in self.bg:
 adjacencies = self.bg[result]
 for key, _ in adjacencies.items():
 for ref_key, values in self.bg[key].items():
 if ref_key == result:
 return ref_key
 return list(self.bg[result].keys())[0]
 return None

[docs] def get_vertex_by_name(self, vertex_name):
 """ Obtains a vertex object by supplied label

 Proxies a call to :meth:`BreakpointGraph._BreakpointGraph__get_vertex_by_name`.

 :param vertex_name: a vertex label it is identified by.
 :type vertex_name: any hashable python object. ``str`` expected.
 :return: vertex with supplied label if present in current :class:`BreakpointGraph`, ``None`` otherwise
 :rtype: :class:`bg.vertices.BGVertex` or ``None``
 """
 return self.__get_vertex_by_name(vertex_name=vertex_name)

 def __get_edge_by_two_vertices(self, vertex1, vertex2, key=None):
 """ Returns an instance of :class:`bg.edge.BBGEdge` edge between to supplied vertices (if ``key`` is supplied, returns a :class:`bg.edge.BBGEdge` instance about specified edge).

 Checks that both specified vertices are in current :class:`BreakpointGraph` and then depending on ``key`` argument, creates a new :class:`bg.edge.BBGEdge` instance and incorporates respective multi-color information into it.

 :param vertex1: first vertex instance out of two in current :class:`BreakpointGraph`
 :type vertex1: any hashable object
 :param vertex2: second vertex instance out of two in current :class:`BreakpointGraph`
 :type vertex2: any hashable object
 :param key: unique identifier of edge of interested to be retrieved from current :class:`BreakpointGraph`
 :type key: any python object. ``None`` or ``int`` is expected
 :return: edge between two specified edges respecting a ``key`` argument.
 :rtype: :class:`bg.edge.BGEdge`
 """
 if vertex1 in self.bg and vertex2 in self.bg[vertex1]:
 if key is None:
 key = min(self.bg[vertex1][vertex2])
 return BGEdge(vertex1=vertex1, vertex2=vertex2, multicolor=self.bg[vertex1][vertex2][key]["multicolor"],
 data=self.bg[vertex1][vertex2][key]["data"])
 return None

[docs] def get_edge_by_two_vertices(self, vertex1, vertex2, key=None):
 """ Returns an instance of :class:`bg.edge.BBGEdge` edge between to supplied vertices (if ``key`` is supplied, returns a :class:`bg.edge.BBGEdge` instance about specified edge).

 Proxies a call to :meth:`BreakpointGraph._BreakpointGraph__get_edge_by_two_vertices`.

 :param vertex1: first vertex instance out of two in current :class:`BreakpointGraph`
 :type vertex1: any hashable object
 :param vertex2: second vertex instance out of two in current :class:`BreakpointGraph`
 :type vertex2: any hashable object
 :param key: unique identifier of edge of interested to be retrieved from current :class:`BreakpointGraph`
 :type key: any python object. ``None`` or ``int`` is expected
 :return: edge between two specified edges respecting a ``key`` argument.
 :rtype: :class:`bg.edge.BGEdge`
 """
 return self.__get_edge_by_two_vertices(vertex1=vertex1, vertex2=vertex2, key=key)

 def __get_edges_by_vertex(self, vertex, keys=False):
 """ Iterates over edges that are incident to supplied vertex argument in current :class:`BreakpointGraph`

 Checks that the supplied vertex argument exists in underlying MultiGraph object as a vertex, then iterates over all edges that are incident to it. Wraps each yielded object into :class:`bg.edge.BGEdge` object.

 :param vertex: a vertex object in current :class:`BreakpointGraph` object
 :type vertex: any hashable object. :class:`bg.vertex.BGVertex` object is expected.
 :param keys: a flag to indicate if information about unique edge's ids has to be returned alongside with edge
 :type keys: ``Boolean``
 :return: generator over edges (tuples ``edge, edge_id`` if keys specified) in current :class:`BreakpointGraph` wrapped in :class:`bg.vertex.BGEVertex`
 :rtype: ``generator``
 """
 if vertex in self.bg:
 for vertex2, edges in self.bg[vertex].items():
 for key, data in self.bg[vertex][vertex2].items():
 bg_edge = BGEdge(vertex1=vertex, vertex2=vertex2, multicolor=data["multicolor"], data=data["data"])
 if keys:
 yield bg_edge, key
 else:
 yield bg_edge

[docs] def get_edges_by_vertex(self, vertex, keys=False):
 """ Iterates over edges that are incident to supplied vertex argument in current :class:`BreakpointGraph`

 Proxies a call to :meth:`Breakpoint._Breakpoint__get_edges_by_vertex` method.

 :param vertex: a vertex object in current :class:`BreakpointGraph` object
 :type vertex: any hashable object. :class:`bg.vertex.BGVertex` object is expected.
 :param keys: a flag to indicate if information about unique edge's ids has to be returned alongside with edge
 :type keys: ``Boolean``
 :return: generator over edges (tuples ``edge, edge_id`` if keys specified) in current :class:`BreakpointGraph` wrapped in :class:`bg.vertex.BGEVertex`
 :rtype: ``generator``
 """
 for entry in self.__get_edges_by_vertex(vertex=vertex, keys=keys):
 yield entry

 def __edges_between_two_vertices(self, vertex1, vertex2, keys=False):
 """ Iterates over edges between two supplied vertices in current :class:`BreakpointGraph`

 Checks that both supplied vertices are present in current breakpoint graph and then yield all edges that are located between two supplied vertices.
 If keys option is specified, then not just edges are yielded, but rather pairs (edge, edge_id) are yielded

 :param vertex1: a first vertex out of two, edges of interest are incident to
 :type vertex1: any hashable object, :class:`bg.vertex.BGVertex` is expected
 :param vertex2: a second vertex out of two, edges of interest are incident to
 :type vertex2: any hashable object, :class:`bg.vertex.BGVertex` is expected
 :param keys: a flag to indicate if information about unique edge's ids has to be returned alongside with edge
 :type keys: ``Boolean``
 :return: generator over edges (tuples ``edge, edge_id`` if keys specified) between two supplied vertices in current :class:`BreakpointGraph` wrapped in :class:`bg.vertex.BGVertex`
 :rtype: ``generator``
 """
 for vertex in vertex1, vertex2:
 if vertex not in self.bg:
 raise ValueError("Supplied vertex ({vertex_name}) is not present in current BreakpointGraph"
 "".format(vertex_name=str(vertex.name)))
 for bgedge, key in self.__get_edges_by_vertex(vertex=vertex1, keys=True):
 if bgedge.vertex2 == vertex2:
 if keys:
 yield bgedge, key
 else:
 yield bgedge

[docs] def edges_between_two_vertices(self, vertex1, vertex2, keys=False):
 """ Iterates over edges between two supplied vertices in current :class:`BreakpointGraph`

 Proxies a call to :meth:`Breakpoint._Breakpoint__edges_between_two_vertices` method.

 :param vertex1: a first vertex out of two, edges of interest are incident to
 :type vertex1: any hashable object, :class:`bg.vertex.BGVertex` is expected
 :param vertex2: a second vertex out of two, edges of interest are incident to
 :type vertex2: any hashable object, :class:`bg.vertex.BGVertex` is expected
 :param keys: a flag to indicate if information about unique edge's ids has to be returned alongside with edge
 :type keys: ``Boolean``
 :return: generator over edges (tuples ``edge, edge_id`` if keys specified) between two supplied vertices in current :class:`BreakpointGraph` wrapped in :class:`bg.vertex.BGVertex`
 :rtype: ``generator``
 """
 for entry in self.__edges_between_two_vertices(vertex1=vertex1, vertex2=vertex2, keys=keys):
 yield entry

[docs] def connected_components_subgraphs(self, copy=True):
 """ Iterates over connected components in current :class:`BreakpointGraph` object, and yields new instances of :class:`BreakpointGraph` with respective information deep-copied by default (week reference is possible of specified in method call).

 :param copy: a flag to signal if graph information has to be deep copied while producing new :class:`BreakpointGraph` instances, of just reference to respective data has to be made.
 :type copy: ``Boolean``
 :return: generator over connected components in current :class:`BreakpointGraph` wrapping respective connected components into new :class:`BreakpointGraph` objects.
 :rtype: ``generator``
 """
 for component in nx.connected_component_subgraphs(self.bg, copy=copy):
 yield BreakpointGraph(component)

 def __delete_bgedge(self, bgedge, key=None, keep_vertices=False):
 """ Deletes a supplied :class:`bg.edge.BGEdge` from a perspective of multi-color substitution. If unique identifier ``key`` is not provided, most similar (from perspective of :meth:`bg.multicolor.Multicolor.similarity_score` result) edge between respective vertices is chosen for change.

 If no unique identifier for edge to be changed is specified, edge to be updated is determined by iterating over all edges between vertices in supplied :class:`bg.edge.BGEdge` instance and the edge with most similarity score to supplied one is chosen.
 Once the edge to be substituted from is determined, substitution if performed form a perspective of :class:`bg.multicolor.Multicolor` substitution.
 If after substitution the remaining multicolor of respective edge is empty, such edge is deleted form a perspective of MultiGraph edge deletion.

 :param bgedge: an edge to be deleted from a perspective of multi-color substitution
 :type bgedge: :class:`bg.edge.BGEdge`
 :param key: unique identifier of existing edges in current :class:`BreakpointGraph` instance to be changed
 :type: any python object. ``int`` is expected.
 :return: ``None``, performed inplace changes.
 """
 ##
 #
 # determines which edge to delete
 # candidate edges setup
 #
 ##

 if key is not None:
 ##
 #
 # is an edge specific key is provided, only edge with that key can undergo multicolor deletion
 # even if that edge is not the most suited to the edge to be deleted
 #
 ##
 self.bg[bgedge.vertex1][bgedge.vertex2][key]["multicolor"] -= bgedge.multicolor
 if len(self.bg[bgedge.vertex1][bgedge.vertex2][key]["multicolor"].multicolors) == 0:
 ##
 #
 # since edge deletion correspond to multicolor substitution one must make sure
 # that no edges with empty multicolor are left in the graph
 #
 ##
 self.bg.remove_edge(v=bgedge.vertex1, u=bgedge.vertex2, key=key)
 if keep_vertices:
 self.bg.add_node(bgedge.vertex1)
 self.bg.add_node(bgedge.vertex2)
 else:
 candidate_data, candidate_id, candidate_score = self.__determine_most_suitable_edge_for_deletion(bgedge)
 if candidate_data is not None:
 candidate_data["multicolor"] -= bgedge.multicolor
 if len(self.bg[bgedge.vertex1][bgedge.vertex2][candidate_id]["multicolor"].multicolors) == 0:
 self.bg.remove_edge(v=bgedge.vertex1, u=bgedge.vertex2, key=candidate_id)
 if keep_vertices:
 self.bg.add_node(bgedge.vertex1)
 self.bg.add_node(bgedge.vertex2)
 self.cache_valid["overall_set_of_colors"] = False

 def __determine_most_suitable_edge_for_deletion(self, bgedge):
 candidate_id = None
 candidate_score = -1
 candidate_data = None
 for v1, v2, key, data in self.bg.edges_iter(nbunch=bgedge.vertex1, data=True, keys=True):
 ##
 #
 # iterate over all edges and determine which edge has a multicolor most related to the provided for deletion edge
 #
 ##
 if v2 == bgedge.vertex2:
 score = Multicolor.similarity_score(bgedge.multicolor, data["multicolor"])
 if score > candidate_score:
 candidate_id = key
 candidate_data = data
 candidate_score = score
 return candidate_data, candidate_id, candidate_score

[docs] def delete_edge(self, vertex1, vertex2, multicolor, key=None):
 """ Creates a new :class:`bg.edge.BGEdge` instance from supplied information and deletes it from a perspective of multi-color substitution. If unique identifier ``key`` is not provided, most similar (from perspective of :meth:`bg.multicolor.Multicolor.similarity_score` result) edge between respective vertices is chosen for change.

 Proxies a call to :math:`BreakpointGraph._BreakpointGraph__delete_bgedge` method.

 :param vertex1: a first vertex out of two the edge to be deleted is incident to
 :type vertex1: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :param vertex2: a second vertex out of two the edge to be deleted is incident to
 :type vertex2: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :param multicolor: a multi-color to find most suitable edge to be deleted
 :type multicolor: :class:`bg.multicolor.Multicolor`
 :param key: unique identifier of existing edges in current :class:`BreakpointGraph` instance to be changed
 :type: any python object. ``int`` is expected.
 :return: ``None``, performed inplace changes.
 """
 self.__delete_bgedge(bgedge=BGEdge(vertex1=vertex1, vertex2=vertex2, multicolor=multicolor), key=key)

[docs] def delete_bgedge(self, bgedge, key=None):
 """ Deletes a supplied :class:`bg.edge.BGEdge` from a perspective of multi-color substitution. If unique identifier ``key`` is not provided, most similar (from perspective of :meth:`bg.multicolor.Multicolor.similarity_score` result) edge between respective vertices is chosen for change.

 Proxies a call to :math:`BreakpointGraph._BreakpointGraph__delete_bgedge` method.

 :param bgedge: an edge to be deleted from a perspective of multi-color substitution
 :type bgedge: :class:`bg.edge.BGEdge`
 :param key: unique identifier of existing edges in current :class:`BreakpointGraph` instance to be changed
 :type: any python object. ``int`` is expected.
 :return: ``None``, performed inplace changes.
 """
 self.__delete_bgedge(bgedge=bgedge, key=key)

 def __split_bgedge(self, bgedge, guidance=None, sorted_guidance=False,
 account_for_colors_multiplicity_in_guidance=True, key=None):
 """ Splits a :class:`bg.edge.BGEdge` in current :class:`BreakpointGraph` most similar to supplied one (if no unique identifier ``key`` is provided) with respect to supplied guidance.

 If no unique identifier for edge to be changed is specified, edge to be split is determined by iterating over all edges between vertices in supplied :class:`bg.edge.BGEdge` instance and the edge with most similarity score to supplied one is chosen.
 Once the edge to be split is determined, split if performed form a perspective of :class:`bg.multicolor.Multicolor` split.
 The originally detected edge is deleted, and new edges containing information about multi-colors after splitting, are added to the current :class:`BreakpointGraph`.

 :param bgedge: an edge to find most "similar to" among existing edges for a split
 :type bgedge: :class:`bg.edge.BGEdge`
 :param guidance: a guidance for underlying :class:`bg.multicolor.Multicolor` object to be split
 :type guidance: iterable where each entry is iterable with colors entries
 :param duplication_splitting: flag (**not** currently implemented) for a splitting of color-based splitting to take into account multiplicity of respective colors
 :type duplication_splitting: ``Boolean``
 :param key: unique identifier of edge to be split
 :type key: any python object. ``int`` is expected
 :return: ``None``, performs inplace changes
 """
 candidate_id = None
 candidate_score = 0
 candidate_data = None
 if key is not None:
 new_multicolors = Multicolor.split_colors(multicolor=self.bg[bgedge.vertex1][bgedge.vertex2][key]["multicolor"],
 guidance=guidance, sorted_guidance=sorted_guidance,
 account_for_color_multiplicity_in_guidance=account_for_colors_multiplicity_in_guidance)
 self.__delete_bgedge(bgedge=BGEdge(vertex1=bgedge.vertex1, vertex2=bgedge.vertex2,
 multicolor=self.bg[bgedge.vertex1][bgedge.vertex2][key]["multicolor"]),
 key=key)
 for multicolor in new_multicolors:
 self.__add_bgedge(BGEdge(vertex1=bgedge.vertex1, vertex2=bgedge.vertex2, multicolor=multicolor),
 merge=False)
 else:
 for v1, v2, key, data in self.bg.edges_iter(nbunch=bgedge.vertex1, data=True, keys=True):
 if v2 == bgedge.vertex2:
 score = Multicolor.similarity_score(bgedge.multicolor, data["multicolor"])
 if score > candidate_score:
 candidate_id = key
 candidate_data = data
 candidate_score = score
 if candidate_data is not None:
 new_multicolors = Multicolor.split_colors(multicolor=candidate_data["multicolor"],
 guidance=guidance, sorted_guidance=sorted_guidance,
 account_for_color_multiplicity_in_guidance=account_for_colors_multiplicity_in_guidance)
 self.__delete_bgedge(bgedge=BGEdge(vertex1=bgedge.vertex1, vertex2=bgedge.vertex2,
 multicolor=candidate_data["multicolor"]),
 key=candidate_id)
 for multicolor in new_multicolors:
 self.__add_bgedge(BGEdge(vertex1=bgedge.vertex1, vertex2=bgedge.vertex2,
 multicolor=multicolor), merge=False)

[docs] def split_edge(self, vertex1, vertex2, multicolor, guidance=None, sorted_guidance=False,
 account_for_colors_multiplicity_in_guidance=True, key=None):
 """ Splits an edge in current :class:`BreakpointGraph` most similar to supplied data (if no unique identifier ``key`` is provided) with respect to supplied guidance.

 Proxies a call to :meth:`BreakpointGraph._BreakpointGraph__split_bgedge` method.

 :param vertex1: a first vertex out of two the edge to be split is incident to
 :type vertex1: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :param vertex2: a second vertex out of two the edge to be split is incident to
 :type vertex2: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :param multicolor: a multi-color to find most suitable edge to be split
 :type multicolor: :class:`bg.multicolor.Multicolor`
 :param duplication_splitting: flag (**not** currently implemented) for a splitting of color-based splitting to take into account multiplicity of respective colors
 :type duplication_splitting: ``Boolean``
 :param key: unique identifier of edge to be split
 :type key: any python object. ``int`` is expected
 :return: ``None``, performs inplace changes
 """
 self.__split_bgedge(bgedge=BGEdge(vertex1=vertex1, vertex2=vertex2, multicolor=multicolor), guidance=guidance,
 sorted_guidance=sorted_guidance,
 account_for_colors_multiplicity_in_guidance=account_for_colors_multiplicity_in_guidance,
 key=key)

[docs] def split_bgedge(self, bgedge, guidance=None, sorted_guidance=False,
 account_for_colors_multiplicity_in_guidance=True,
 key=None):
 """ Splits a :class:`bg.edge.BGEdge` in current :class:`BreakpointGraph` most similar to supplied one (if no unique identifier ``key`` is provided) with respect to supplied guidance.

 Proxies a call to :meth:`BreakpointGraph._BreakpointGraph__split_bgedge` method.

 :param bgedge: an edge to find most "similar to" among existing edges for a split
 :type bgedge: :class:`bg.edge.BGEdge`
 :param guidance: a guidance for underlying :class:`bg.multicolor.Multicolor` object to be split
 :type guidance: iterable where each entry is iterable with colors entries
 :param duplication_splitting: flag (**not** currently implemented) for a splitting of color-based splitting to take into account multiplicity of respective colors
 :type duplication_splitting: ``Boolean``
 :param key: unique identifier of edge to be split
 :type key: any python object. ``int`` is expected
 :return: ``None``, performs inplace changes
 """
 self.__split_bgedge(bgedge=bgedge, guidance=guidance, sorted_guidance=sorted_guidance,
 account_for_colors_multiplicity_in_guidance=account_for_colors_multiplicity_in_guidance,
 key=key)

 def __split_all_edges_between_two_vertices(self, vertex1, vertex2, guidance=None, sorted_guidance=False,
 account_for_colors_multiplicity_in_guidance=True):
 """ Splits all edges between two supplied vertices in current :class:`BreakpointGraph` instance with respect to the provided guidance.

 Iterates over all edges between two supplied vertices and splits each one of them with respect to the guidance.

 :param vertex1: a first out of two vertices edges between which are to be split
 :type vertex1: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :param vertex2: a second out of two vertices edges between which are to be split
 :type vertex2: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :param guidance: a guidance for underlying :class:`bg.multicolor.Multicolor` objects to be split
 :type guidance: iterable where each entry is iterable with colors entries
 :return: ``None``, performs inplace changes
 """
 edges_to_be_split_keys = [key for v1, v2, key in self.bg.edges_iter(nbunch=vertex1, keys=True) if v2 == vertex2]
 for key in edges_to_be_split_keys:
 self.__split_bgedge(BGEdge(vertex1=vertex1, vertex2=vertex2, multicolor=None), guidance=guidance,
 sorted_guidance=sorted_guidance,
 account_for_colors_multiplicity_in_guidance=account_for_colors_multiplicity_in_guidance,
 key=key)

[docs] def split_all_edges_between_two_vertices(self, vertex1, vertex2, guidance=None, sorted_guidance=False,
 account_for_colors_multiplicity_in_guidance=True):
 """ Splits all edges between two supplied vertices in current :class:`BreakpointGraph` instance with respect to the provided guidance.

 Proxies a call to :meth:`BreakpointGraph._BreakpointGraph__split_all_edges_between_two_vertices` method.

 :param vertex1: a first out of two vertices edges between which are to be split
 :type vertex1: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :param vertex2: a second out of two vertices edges between which are to be split
 :type vertex2: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :param guidance: a guidance for underlying :class:`bg.multicolor.Multicolor` objects to be split
 :type guidance: iterable where each entry is iterable with colors entries
 :return: ``None``, performs inplace changes
 """
 self.__split_all_edges_between_two_vertices(vertex1=vertex1, vertex2=vertex2, guidance=guidance,
 sorted_guidance=sorted_guidance,
 account_for_colors_multiplicity_in_guidance=account_for_colors_multiplicity_in_guidance)

[docs] def split_all_edges(self, guidance=None, sorted_guidance=False, account_for_colors_multiplicity_in_guidance=True):
 """ Splits all edge in current :class:`BreakpointGraph` instance with respect to the provided guidance.

 Iterate over all possible distinct pairs of vertices in current :class:`BreakpointGraph` instance and splits all edges between such pairs with respect to provided guidance.

 :param guidance: a guidance for underlying :class:`bg.multicolor.Multicolor` objects to be split
 :type guidance: iterable where each entry is iterable with colors entries
 :return: ``None``, performs inplace changes
 """
 vertex_pairs = [(edge.vertex1, edge.vertex2) for edge in self.edges()]
 for v1, v2 in vertex_pairs:
 self.__split_all_edges_between_two_vertices(vertex1=v1, vertex2=v2, guidance=guidance,
 sorted_guidance=sorted_guidance,
 account_for_colors_multiplicity_in_guidance=account_for_colors_multiplicity_in_guidance)

 def __delete_all_bgedges_between_two_vertices(self, vertex1, vertex2):
 """ Deletes all edges between two supplied vertices

 :param vertex1: a first out of two vertices edges between which are to be deleted
 :type vertex1: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :param vertex2: a second out of two vertices edges between which are to be deleted
 :type vertex2: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :return: ``None``, performs inplace changes
 """
 edges_to_be_deleted_with_keys = [(key, data) for v1, v2, key, data in self.bg.edges_iter(nbunch=vertex1, keys=True,
 data=True) if v2 == vertex2]
 for key, data in edges_to_be_deleted_with_keys:
 self.__delete_bgedge(BGEdge(vertex1=vertex1, vertex2=vertex2, multicolor=data["multicolor"]), key=key)

[docs] def delete_all_edges_between_two_vertices(self, vertex1, vertex2):
 """ Deletes all edges between two supplied vertices

 Proxies a call to :meth:`BreakpointGraph._BreakpointGraph__delete_all_bgedges_between_two_vertices` method.

 :param vertex1: a first out of two vertices edges between which are to be deleted
 :type vertex1: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :param vertex2: a second out of two vertices edges between which are to be deleted
 :type vertex2: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :return: ``None``, performs inplace changes
 """
 self.__delete_all_bgedges_between_two_vertices(vertex1=vertex1, vertex2=vertex2)

 def __merge_all_bgedges_between_two_vertices(self, vertex1, vertex2):
 """ Merges all edge between two supplied vertices into a single edge from a perspective of multi-color merging.

 :param vertex1: a first out of two vertices edges between which are to be merged together
 :type vertex1: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :param vertex2: a second out of two vertices edges between which are to be merged together
 :type vertex2: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :return: ``None``, performs inplace changes
 """
 ##
 #
 # no actual merging is performed, but rather all edges between two vertices are deleted
 # and then added with a merge argument set to true
 #
 ##
 edges_multicolors = [deepcopy(data["multicolor"]) for v1, v2, data in
 self.bg.edges_iter(nbunch=vertex1, data=True) if v2 == vertex2]
 self.__delete_all_bgedges_between_two_vertices(vertex1=vertex1, vertex2=vertex2)
 for multicolor in edges_multicolors:
 self.__add_bgedge(BGEdge(vertex1=vertex1, vertex2=vertex2, multicolor=multicolor), merge=True)

[docs] def merge_all_edges_between_two_vertices(self, vertex1, vertex2):
 """ Merges all edge between two supplied vertices into a single edge from a perspective of multi-color merging.

 Proxies a call to :meth:`BreakpointGraph._BreakpointGraph__merge_all_bgedges_between_two_vertices`

 :param vertex1: a first out of two vertices edges between which are to be merged together
 :type vertex1: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :param vertex2: a second out of two vertices edges between which are to be merged together
 :type vertex2: any python hashable object. :class:`bg.vertex.BGVertex` is expected
 :return: ``None``, performs inplace changes
 """
 self.__merge_all_bgedges_between_two_vertices(vertex1=vertex1, vertex2=vertex2)

[docs] def merge_all_edges(self):
 """ Merges all edges in a current :class`BreakpointGraph` instance between same pairs of vertices into a single edge from a perspective of multi-color merging.

 Iterates over all possible pairs of vertices in current :class:`BreakpointGraph` and merges all edges between respective pairs.

 :return: ``None``, performs inplace changes
 """
 pairs_of_vetices = [(edge.vertex1, edge.vertex2) for edge in self.edges()]
 for v1, v2 in pairs_of_vetices:
 ##
 #
 # we iterate over all pairs of vertices in the given graph and merge edges between them
 #
 ##
 self.__merge_all_bgedges_between_two_vertices(vertex1=v1, vertex2=v2)

 @classmethod
[docs] def merge(cls, breakpoint_graph1, breakpoint_graph2, merge_edges=False):
 """ Merges two given instances of :class`BreakpointGraph` into a new one, that gather all available information from both supplied objects.

 Depending of a ``merge_edges`` flag, while merging of two dat structures is occurring, edges between similar vertices can be merged during the creation of a result :class`BreakpointGraph` obejct.

 Accounts for subclassing.

 :param breakpoint_graph1: a first out of two :class`BreakpointGraph` instances to gather information from
 :type breakpoint_graph1: :class`BreakpointGraph`
 :param breakpoint_graph2: a second out of two :class`BreakpointGraph` instances to gather information from
 :type breakpoint_graph2: :class`BreakpointGraph`
 :param merge_edges: flag to indicate if edges in a new merged :class`BreakpointGraph` object has to be merged between same vertices, or if splitting from supplied graphs shall be preserved.
 :type merge_edges: ``Boolean``
 :return: a new breakpoint graph object that contains all information gathered from both supplied breakpoint graphs
 :rtype: :class`BreakpointGraph`
 """
 result = cls()
 for bgedge in breakpoint_graph1.edges():
 result.__add_bgedge(bgedge=bgedge, merge=merge_edges)
 for bgedge in breakpoint_graph2.edges():
 result.__add_bgedge(bgedge=bgedge, merge=merge_edges)
 return result

 def __update(self, breakpoint_graph, merge_edges=False):
 """ Updates a current :class`BreakpointGraph` object with information from a supplied :class`BreakpointGraph` instance.

 Depending of a ``merge_edges`` flag, while updating of a current :class`BreakpointGraph` object is occuring, edges between similar vertices can be merged to already existing ones.

 :param breakpoint_graph: a breakpoint graph to extract information from, which will be then added to the current
 :type breakpoint_graph: :class`BreakpointGraph`
 :param merge_edges: flag to indicate if edges to be added to current :class`BreakpointGraph` object are to be merged to already existing ones
 :type merge_edges: ``Boolean``
 :return: ``None``, performs inplace changes
 """
 for bgedge in breakpoint_graph.edges():
 self.__add_bgedge(bgedge=deepcopy(bgedge), merge=merge_edges)

[docs] def update(self, breakpoint_graph, merge_edges=False):
 """ Updates a current :class`BreakpointGraph` object with information from a supplied :class`BreakpointGraph` instance.

 Proxoes a call to :meth:`BreakpointGraph._BreakpointGraph__update` method.

 :param breakpoint_graph: a breakpoint graph to extract information from, which will be then added to the current
 :type breakpoint_graph: :class:`BreakpointGraph`
 :param merge_edges: flag to indicate if edges to be added to current :class`BreakpointGraph` object are to be merged to already existing ones
 :type merge_edges: ``Boolean``
 :return: ``None``, performs inplace changes
 """
 self.__update(breakpoint_graph=breakpoint_graph,
 merge_edges=merge_edges)

[docs] def apply_kbreak(self, kbreak, merge=True):
 """ Check validity of supplied k-break and then applies it to current :class:`BreakpointGraph`

 Only :class:`bg.kbreak.KBreak` (or its heirs) instances are allowed as ``kbreak`` argument.
 KBreak must correspond to the valid kbreak and, since some changes to its internals might have been done since its creation, a validity check in terms of starting/resulting edges is performed.
 All vertices in supplied KBreak (except for paired infinity vertices) must be present in current :class:`BreakpointGraph`.
 For all supplied pairs of vertices (except for paired infinity vertices), there must be edges between such pairs of vertices, at least one of which must contain a multicolor matching a multicolor of supplied kbreak.

 Edges of specified in kbreak multicolor are deleted between supplied pairs of vertices in kbreak.start_edges (except for paired infinity vertices).
 New edges of specified in kbreak multicolor are added between all pairs of vertices in kbreak.result_edges (except for paired infinity vertices).
 If after the kbreak application there is an infinity vertex, that now has no edges incident to it, it is deleted form the current :class:`BreakpointGraph`.

 :param kbreak: a k-break to be applied to current :class:`BreakpointGraph`
 :type kbreak: `bg.kbreak.KBreak`
 :param merge: a flag to indicate on how edges, that will be created by a k-break, will be added to current :class:`BreakpointGraph`
 :type merge: ``Boolean``
 :return: nothing, performs inplace changes
 :rtype: ``None``
 :raises: ``ValueError``, ``TypeError``
 """
 ##
 #
 # k-break must ba valid to be applied
 #
 ##
 vertices = {}
 edge_data = {}
 if not isinstance(kbreak, KBreak):
 raise TypeError("Only KBreak and derivatives are allowed as kbreak argument")
 if not KBreak.valid_kbreak_matchings(kbreak.start_edges, kbreak.result_edges):
 raise ValueError("Supplied KBreak is not valid form perspective of starting/resulting sets of vertices")
 for vertex1, vertex2 in kbreak.start_edges:

 if vertex1.is_infinity_vertex and vertex2.is_infinity_vertex:
 ##
 #
 # when we encounter a fully infinity edge (both vertices are infinity vertices)
 # we shall not check if they are present in the current graph, because hat portion of a kbreak is artificial
 #
 ##
 continue
 if vertex1 not in self.bg or vertex2 not in self.bg:
 raise ValueError("Supplied KBreak targets vertices (`{v1}` and `{v2}`) at least one of which "
 "does not exist in current BreakpointGraph"
 "".format(v1=vertex1.name, v2=vertex2.name))
 for vertex1, vertex2 in kbreak.start_edges:
 if vertex1.is_infinity_vertex and vertex2.is_infinity_vertex:
 continue
 for bgedge in self.__edges_between_two_vertices(vertex1=vertex1, vertex2=vertex2):
 ##
 #
 # at least one edge between supplied pair of vertices must contain a multicolor that is specified for the kbreak
 #
 ##
 if kbreak.multicolor <= bgedge.multicolor:
 break
 else:
 raise ValueError("Some targeted by kbreak edge with specified multicolor does not exists")
 for vertex1, vertex2 in kbreak.start_edges:
 if vertex1.is_infinity_vertex and vertex2.is_infinity_vertex:
 continue
 v1 = self.__get_vertex_by_name(vertex_name=vertex1.name)
 vertices[v1] = v1
 v2 = self.__get_vertex_by_name(vertex_name=vertex2.name)
 vertices[v2] = v2
 bgedge = BGEdge(vertex1=v1, vertex2=v2, multicolor=kbreak.multicolor)
 candidate_data, candidate_id, candidate_score = self.__determine_most_suitable_edge_for_deletion(bgedge=bgedge)
 data = candidate_data["data"]
 edge_data[v1] = data
 edge_data[v2] = data
 self.__delete_bgedge(bgedge=bgedge, keep_vertices=True)
 for vertex_set in kbreak.start_edges:
 for vertex in vertex_set:
 if vertex.is_infinity_vertex and vertex in self.bg:
 ##
 #
 # after the first portion of a kbreak is performed one must make sure we don't leave any infinity vertices
 # that have edges going to them, as infinity vertex is a special artificial vertex
 # and it has meaning only if there are edges going to / from it
 #
 ##
 if len(list(self.get_edges_by_vertex(vertex=vertex))) == 0:
 self.bg.remove_node(vertex)
 for vertex1, vertex2 in kbreak.result_edges:
 if vertex1.is_infinity_vertex and vertex2.is_infinity_vertex:
 ##
 #
 # if we encounter a pair of infinity vertices in result edges set, we shall not add them
 # as at least a part of kbreak corresponded to fusion
 # and those infinity edges on their own won't have any meaning
 #
 ##
 continue
 origin = kbreak.data.get("origin", None)
 v1 = vertices.get(vertex1, vertex1)
 v2 = vertices.get(vertex2, vertex2)
 bg_edge = BGEdge(vertex1=v1, vertex2=v2, multicolor=kbreak.multicolor)
 if "origin" in bg_edge.data:
 bg_edge.data["origin"] = origin
 if kbreak.is_a_fusion:
 edge1_data = edge_data[v1]
 edge2_data = edge_data[v2]
 merged_edge_fragment_data = merge_fragment_edge_data(edge1_data["fragment"], edge2_data["fragment"])
 result_edge_data = {}
 recursive_dict_update(result_edge_data, edge1_data)
 recursive_dict_update(result_edge_data, edge2_data)
 recursive_dict_update(result_edge_data, {"fragment": merged_edge_fragment_data})
 recursive_dict_update(bg_edge.data, result_edge_data)
 self.__add_bgedge(bg_edge, merge=merge)

[docs] def to_json(self, schema_info=True):
 """ JSON serialization method that account for all information-wise important part of breakpoint graph
 """
 genomes = set()
 result = {}
 result["edges"] = []
 for bgedge in self.edges():
 genomes |= bgedge.multicolor.colors
 result["edges"].append(bgedge.to_json(schema_info=schema_info))
 result["vertices"] = [bgvertex.to_json(schema_info=schema_info) for bgvertex in self.nodes()]
 result["genomes"] = [bggenome.to_json(schema_info=schema_info) for bggenome in genomes]
 return result

 @classmethod
[docs] def from_json(cls, data, genomes_data=None, genomes_deserialization_required=True, merge=False):
 """ A JSON deserialization operation, that recovers a breakpoint graph from its JSON representation

 as information about genomes, that are encoded in breakpoint graph might be available somewhere else, but not the
 json object, there is an option to provide it and omit encoding information about genomes.
 """
 result = cls()
 merge = merge
 vertices_dict = {}
 genomes_dict = genomes_data if genomes_data is not None and not genomes_deserialization_required else None
 if genomes_dict is None:
 ##
 #
 # if we need to recover genomes information from breakpoint graph json object
 # we are happy to do that
 #
 ##
 genomes_dict = {}
 try:
 source = genomes_data if genomes_data is not None and genomes_deserialization_required else data["genomes"]
 except KeyError as exc:
 raise ValueError("Error during breakpoint graph deserialization. No \"genomes\" information found")
 for g_dict in source:
 ##
 #
 # if explicitly specified in genome json object, it can be decoded using provided schema name,
 # of course a decoding breakpoint graph object shall be aware of such scheme
 # (it has to be specified in the `genomes_json_schemas` class wide dict)
 #
 ##
 schema_name = g_dict.get(BGGenome_JSON_SCHEMA_JSON_KEY, None)
 schema_class = None if schema_name is None else cls.genomes_json_schemas.get(schema_name, None)
 genomes_dict[g_dict["g_id"]] = BGGenome.from_json(data=g_dict, json_schema_class=schema_class)
 if "vertices" not in data:
 ##
 #
 # breakpoint graph can not be decoded without having information about vertices explicitly
 # as vertices are referenced in edges object, rather than explicitly provided
 #
 ##
 raise ValueError("Error during breakpoint graph deserialization. \"vertices\" key is not present in json object")
 for vertex_dict in data["vertices"]:
 ##
 #
 # if explicitly specified in vertex json object, it can be decoded using provided schema name,
 # of course a decoding breakpoint graph object shall be aware of such scheme
 # (it has to be specified in the `vertices_json_schemas` class wide dict)
 #
 ##
 schema_name = vertex_dict.get(BGVertex_JSON_SCHEMA_JSON_KEY, None)
 schema_class = None if schema_name is None else cls.vertices_json_schemas.get(schema_name, None)
 try:
 ##
 #
 # we try to recover a specific vertex class based on its name.
 # it does not overwrite the schema based behaviour
 # but provides a correct default schema for a specific vertex type
 #
 ##
 vertex_class = BGVertex.get_vertex_class_from_vertex_name(vertex_dict["name"])
 except KeyError:
 vertex_class = BGVertex
 vertices_dict[vertex_dict["v_id"]] = vertex_class.from_json(data=vertex_dict, json_schema_class=schema_class)
 for edge_dict in data["edges"]:
 ##
 #
 # if explicitly specified in edge json object, it can be decoded using provided schema name,
 # of course a decoding breakpoint graph object shall be aware of such scheme
 # (it has to be specified in the `edges_json_schemas` class wide dict)
 #
 ##
 schema_name = edge_dict.get(BGEdge_JSON_SCHEMA_JSON_KEY, None)
 schema = None if schema_name is None else cls.edges_json_schemas.get(schema_name, None)
 edge = BGEdge.from_json(data=edge_dict, json_schema_class=schema)
 try:
 edge.vertex1 = vertices_dict[edge.vertex1]
 edge.vertex2 = vertices_dict[edge.vertex2]
 except KeyError:
 ##
 #
 # as edge references a pair of vertices, we must be sure respective vertices were decoded
 #
 ##
 raise ValueError("Error during breakpoint graph deserialization. Deserialized edge references non-present vertex")
 if len(edge.multicolor) == 0:
 ##
 #
 # edges with empty multicolor are not permitted in breakpoint graphs
 #
 ##
 raise ValueError("Error during breakpoint graph deserialization. Empty multicolor for deserialized edge")
 try:
 edge.multicolor = Multicolor(*[genomes_dict[g_id] for g_id in edge.multicolor])
 except KeyError:
 raise ValueError("Error during breakpoint graph deserialization. Deserialized edge reference non-present "
 "genome in its multicolor")
 result.__add_bgedge(edge, merge=merge)
 return result

 def get_overall_set_of_colors(self):
 if "overall_set_of_colors" not in self.cache_valid or not self.cache_valid["overall_set_of_colors"]:
 self.cache["overall_set_of_colors"] = {color for bg_edge in self.edges() for color in bg_edge.multicolor.colors}
 self.cache_valid["overall_set_of_colors"] = True
 return self.cache["overall_set_of_colors"]

 def get_genome_graph(self, color):
 result = BreakpointGraph()
 mc = Multicolor(color)
 for edge in self.edges():
 if mc <= edge.multicolor:
 result.__add_bgedge(bgedge=BGEdge(vertex1=edge.vertex1, vertex2=edge.vertex2,
 multicolor=mc, data=edge.data))
 return result

 def get_blocks_order(self):
 genome = self.get_overall_set_of_colors().pop()
 result = {genome: []}
 visited_vertices = set()
 for vertex in self.nodes():
 if vertex in visited_vertices:
 continue
 visited_vertices.add(vertex)
 chr_type_f, fragment_part_forward = self._traverse_blocks_forward_from_vertex(vertex=vertex, visited_vertices=visited_vertices)
 chr_type_r, fragment_part_reverse = self._traverse_blocks_reverse_from_vertex(vertex=vertex, visited_vertices=visited_vertices)
 if chr_type_f != chr_type_r:
 raise Exception("During the gene order sequence traversal we got a conflicted situation. "
 "Most probably case for this to happen is to have a genome with non-unique gene content")
 if chr_type_f == "$":
 fragment = fragment_part_reverse + fragment_part_forward
 else:
 fragment = fragment_part_forward if len(fragment_part_forward) > len(fragment_part_reverse) else fragment_part_reverse
 result[genome].append((chr_type_f, fragment))
 return result

 def _traverse_blocks_from_vertex(self, vertex, visited_vertices, direction):
 result = []
 current_vertex = vertex
 visited_vertices.add(current_vertex)
 if current_vertex.is_irregular_vertex:
 edge = list(self.get_edges_by_vertex(vertex=current_vertex))[0]
 current_vertex = edge.vertex1 if edge.vertex1 != current_vertex else edge.vertex2
 visited_vertices.add(current_vertex)
 if current_vertex.is_tail_vertex and direction == "forward" or current_vertex.is_head_vertex and direction == "reverse":
 result.append(("+", current_vertex.block_name))
 current_vertex = current_vertex.mate_vertex
 visited_vertices.add(current_vertex)
 edge = list(self.get_edges_by_vertex(vertex=current_vertex))[0]
 current_vertex = edge.vertex1 if edge.vertex1 != current_vertex else edge.vertex2
 while current_vertex not in visited_vertices and current_vertex.is_regular_vertex:
 visited_vertices.add(current_vertex)
 if direction == "forward":
 sign = "+" if current_vertex.is_tail_vertex else "-"
 elif direction == "reverse":
 sign = "-" if current_vertex.is_tail_vertex else "+"
 else:
 sign = "*"
 result.append((sign, current_vertex.block_name))
 current_vertex = current_vertex.mate_vertex
 visited_vertices.add(current_vertex)
 edge = list(self.get_edges_by_vertex(vertex=current_vertex))[0]
 current_vertex = edge.vertex1 if edge.vertex1 != current_vertex else edge.vertex2
 visited_vertices.add(current_vertex)
 if current_vertex.is_irregular_vertex:
 chr_type = "$"
 else:
 chr_type = "@"
 if direction == "reverse":
 result = result[::-1]
 return chr_type, result

 def _traverse_blocks_forward_from_vertex(self, vertex, visited_vertices):
 return self._traverse_blocks_from_vertex(vertex=vertex, visited_vertices=visited_vertices, direction="forward")

 def _traverse_blocks_reverse_from_vertex(self, vertex, visited_vertices):
 return self._traverse_blocks_from_vertex(vertex=vertex, visited_vertices=visited_vertices, direction="reverse")

 def _traverse_fragments_forward_from_vertex(self, vertex, visited_vertices):
 return self._traverse_fragments_from_vertex(vertex=vertex, visited_vertices=visited_vertices, direction="forward")

 def _traverse_fragments_reverse_from_vertex(self, vertex, visited_vertices):
 return self._traverse_fragments_from_vertex(vertex=vertex, visited_vertices=visited_vertices, direction="reverse")

 def has_edge(self, vertex1, vertex2):
 return self.bg.has_edge(u=vertex1, v=vertex2)

 def get_condensed_edge(self, vertex1, vertex2):
 if not self.has_edge(vertex1=vertex1, vertex2=vertex2):
 return None
 result = BGEdge(vertex1=vertex1, vertex2=vertex2, multicolor=Multicolor())
 for edge in self.__edges_between_two_vertices(vertex1=vertex1, vertex2=vertex2):
 result.multicolor += edge.multicolor
 return result

 def get_fragments_orders(self):
 genome = self.get_overall_set_of_colors().pop()
 result = {genome: []}
 visited_vertices = set()
 ivs = (v for v in self.nodes() if v.is_irregular_vertex)
 rvs = (v for v in self.nodes() if v.is_regular_vertex)
 for vertex in itertools.chain(ivs, rvs):
 if vertex in visited_vertices:
 continue
 chr_type_f, fragments_order_part_forward = self._traverse_fragments_forward_from_vertex(vertex=vertex,
 visited_vertices=visited_vertices)
 chr_type_r, fragments_order_part_reverse = self._traverse_fragments_reverse_from_vertex(vertex=vertex,
 visited_vertices=visited_vertices)
 if chr_type_f != chr_type_r:
 raise Exception("During the fragment order sequence traversal we got a conflicted situation. "
 "Most probably case for this to happen is to have a genome with non-unique gene content")
 if chr_type_f == "$":
 if len(fragments_order_part_forward) == 0:
 fragment = fragments_order_part_reverse
 elif len(fragments_order_part_reverse) == 0:
 fragment = fragments_order_part_forward
 else:
 coincide = fragments_order_part_reverse[-1][0] == fragments_order_part_forward[0][0]
 coincide &= fragments_order_part_reverse[-1][1] == fragments_order_part_forward[0][1]
 if coincide:
 fragment = fragments_order_part_reverse[:-1] + fragments_order_part_forward
 else:
 fragment = fragments_order_part_reverse + fragments_order_part_forward
 else:
 fragment = fragments_order_part_forward if len(fragments_order_part_forward) > len(
 fragments_order_part_reverse) else fragments_order_part_reverse
 if len(fragment) > 1 and fragment[-1][0] == fragment[0][0] and fragment[-1][1] == fragment[0][1]:
 fragment = fragment[:-1]
 result[genome].append((chr_type_f, fragment))
 return result

 def _traverse_fragments_from_vertex(self, vertex, visited_vertices, direction):
 result = []
 current_vertex = vertex
 current_fragment_name = None
 current_fragment_orientation = None
 if current_vertex.is_tail_vertex and direction == "forward" or current_vertex.is_head_vertex and direction == "reverse":
 current_vertex = current_vertex.mate_vertex
 elif not (current_vertex.is_irregular_vertex and current_vertex in visited_vertices):
 visited_vertices.add(current_vertex)
 edge = list(self.get_edges_by_vertex(vertex=current_vertex))[0]
 fragment_names = get_from_dict_with_path(source_dict=edge.data, key="name", path=["fragment"])
 if not isinstance(fragment_names, list):
 fragment_names = [fragment_names]
 fragment_orientations = self._get_fragment_to_edge_orientation(current_vertex=current_vertex, edge=edge)
 fragment_orientations = self.update_orientation_with_direction(orientation=fragment_orientations,
 direction=direction)
 for name, orientation in zip(fragment_names, fragment_orientations):
 new_encounter = current_fragment_name != name or current_fragment_orientation != name
 if name not in [None, ""] and orientation not in [None, ""] and new_encounter:
 current_fragment_name = name
 current_fragment_orientation = orientation
 result.append((current_fragment_orientation, current_fragment_name))
 current_vertex = edge.vertex1 if edge.vertex1 != current_vertex else edge.vertex2
 visited_vertices.add(current_vertex)
 if not current_vertex.is_irregular_vertex:
 current_vertex = current_vertex.mate_vertex
 while current_vertex not in visited_vertices and not current_vertex.is_irregular_vertex:
 visited_vertices.add(current_vertex)
 edge = list(self.get_edges_by_vertex(vertex=current_vertex))[0]
 fragment_names = get_from_dict_with_path(source_dict=edge.data, key="name", path=["fragment"])
 if not isinstance(fragment_names, list):
 fragment_names = [fragment_names]
 fragment_orientations = self._get_fragment_to_edge_orientation(current_vertex=current_vertex, edge=edge)
 fragment_orientations = self.update_orientation_with_direction(orientation=fragment_orientations,
 direction=direction)
 if current_fragment_name == fragment_names[-1]:
 fragment_names = fragment_names[::-1]
 fragment_orientations = fragment_orientations[::-1]
 for name, orientation in zip(fragment_names, fragment_orientations):
 initial_state = current_fragment_name is None or current_fragment_orientation is None
 new_encounter = current_fragment_name != name or current_fragment_orientation != orientation
 new_encounter &= name not in [None, ""] and orientation not in [None, ""]
 if initial_state or new_encounter:
 current_fragment_name = name
 current_fragment_orientation = orientation
 if current_fragment_name not in [None, ""] and current_fragment_orientation not in [None, ""]:
 result.append((current_fragment_orientation, current_fragment_name))
 current_vertex = edge.vertex1 if edge.vertex1 != current_vertex else edge.vertex2
 if current_vertex.is_irregular_vertex:
 break
 visited_vertices.add(current_vertex)
 current_vertex = current_vertex.mate_vertex

 visited_vertices.add(current_vertex)
 if current_vertex.is_irregular_vertex:
 chr_type = "$"
 else:
 chr_type = "@"
 if direction == "reverse":
 result = result[::-1]
 return chr_type, result

 @staticmethod
 def _get_fragment_to_edge_orientation(current_vertex, edge):
 v1, v2 = (edge.vertex1, edge.vertex2) if edge.vertex1 == current_vertex else (edge.vertex2, edge.vertex1)
 forward_orientation = get_from_dict_with_path(source_dict=edge.data, key="forward_orientation", path=["fragment"])
 if isinstance(forward_orientation, list):
 return ["+" if BreakpointGraph._forward_orientation(v1, v2, orientation) else "-" for orientation in forward_orientation]
 else:
 return ["+" if BreakpointGraph._forward_orientation(v1, v2, forward_orientation) else "-"]

 @staticmethod
 def _forward_orientation(v1, v2, forward_orientation):
 if forward_orientation is None:
 return True
 left_v = v1 not in forward_orientation or forward_orientation[0] == v1
 right_v = v2 not in forward_orientation or forward_orientation[1] == v2
 return left_v and right_v

 @staticmethod
 def update_orientation_with_direction(orientation, direction):
 result = []
 for entry in orientation:
 if direction == "forward":
 result.append(entry)
 else:
 result.append("-" if entry == "+" else "+")
 return result

class BGConnectedComponentFilter(object):
 def __init__(self):
 self.name = None

 def accept_connected_component(self, cc, breakpoint_graph=None):
 return True

class CompleteMultiEdgeConnectedComponentFilter(BGConnectedComponentFilter):
 def __init__(self):
 super(CompleteMultiEdgeConnectedComponentFilter, self).__init__()
 self.name = "Complete ME filter"

 def accept_connected_component(self, cc, breakpoint_graph=None):
 if len(list(cc.nodes())) != 2:
 return True
 genomes_cnt = len(breakpoint_graph.get_overall_set_of_colors())
 edges_genomes_cnt = len({color for edge in cc.edges() for color in edge.multicolor.colors})
 return genomes_cnt != edges_genomes_cnt

class TwoNodeConnectedComponentFilter(BGConnectedComponentFilter):
 def __init__(self):
 super(TwoNodeConnectedComponentFilter, self).__init__()
 self.name = "Two node filter"

 def accept_connected_component(self, cc, breakpoint_graph=None):
 return len(list(cc.nodes())) != 2

 © Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

_modules/bg/kbreak.html

 Navigation

 		
 index

 		
 modules |

 		bg 1.8 documentation »

 		Module code »

 Source code for bg.kbreak

-*- coding: utf-8 -*-
from collections import Counter

__author__ = "Sergey Aganezov"
__email__ = "aganezov(at)gwu.edu"
__status__ = "production"

[docs]class KBreak(object):
 """ A generic object that can represent any k-break (k>= 2)

 A notion of k-break arises from the bioinformatics combinatorial object BreakpointGraph and is first mentioned in http://home.gwu.edu/~maxal/ap_tcs08.pdf
 A generic k-break operates on k specified edges of spisific multicolor and replaces them with another set of k edges with the same multicolor on the same set of vertices in way, that the degree of vertices is kept intact.

 Initialization of the instance of :class:`KBreak` is performed with a validity check of supplied data, which must comply with the definition of k-break.

 Class carries following attributes carrying information about k-break structure:

 * :attr:`KBreak.start_edges`: a list of edges (in terms of paired vertices) that are to be removed by current :class:`KBreak`
 * :attr:`KBreak.result_edges`: a list of edges (in terms of paired vertices) that are to be created by current :class:`KBreak`
 * :attr:`KBreak.multicolor`: a :class:`bg.multicolor.Multicolor` instance, that specifies the multicolor of edges that are to be removed / created by current :class:`KBreak`

 Main operations:

 * :meth:`KBreak.valid_kbreak_matchings`: a method that checks if provided sets of started / resulted edges comply with the notions ob k-break definition
 """
[docs] def __init__(self, start_edges, result_edges, multicolor, data=None):
 """ Initialization of :class:`KBreak` object.

 The initialization process consists of multiple checks, before any assignment and initialization itself is performed.

 First checks the fact, that information about start / result edges is supplied in form of paired vertices.
 Then check is performed to make sure, that degrees of vertices, that current :class:`KBreak` operates on, is preserved.

 :param start_edges: a list of pairs of vertices, that specifies where edges shall be removed by current :class:`KBreak`
 :type start_edges: ``list(tuple(vertex, vertex), ...)``
 :param result_edges: a list of pairs of vertices, that specifies where edges shall be created by current :class:`KBreak`
 :type result_edges: ``list(tuple(vertex, vertex), ...)``
 :param multicolor: a multicolor, that specifies which edges between specified pairs of vertices are to be removed / created
 :type multicolor: :class:`bg.multicolor.Multicolor`
 :return: a new instance of :class:`Kbreak`
 :rtype: :class:`KBreak`
 :raises: ``ValueError``
 """
 self.start_edges = start_edges
 self.result_edges = result_edges
 self.multicolor = multicolor
 if data is None:
 data = self.create_default_data_dict()
 self.data = data
 for vertex_pair in self.start_edges:
 if len(vertex_pair) != 2:
 raise ValueError("Expected edges in a form of pairs of vertices.\n "
 "Not a pair of vertices ({issue}) in start edges."
 "".format(issue=str(vertex_pair)))
 for vertex_pair in self.result_edges:
 if len(vertex_pair) != 2:
 raise ValueError("Expected edges in a form of pairs of vertices.\n "
 "Not a pair of vertices ({issue}) in result edges."
 "".format(issue=str(vertex_pair)))
 if not KBreak.valid_kbreak_matchings(start_edges=self.start_edges,
 result_edges=self.result_edges):
 raise ValueError("Supplied sets of start and result edges do not correspond to "
 "correct k-break operation (either the set of vertices is not consistent, or "
 "the degrees of vertices change)")

 @property
 def is_a_two_break(self):
 return len(self.start_edges) == 2

 @property
 def is_a_fusion(self):
 return self.is_a_two_break and any(map(lambda vertex_set: all(map(lambda vertex: vertex.is_irregular_vertex, vertex_set)), self.result_edges))

 @classmethod
 def create_default_data_dict(cls):
 return {
 "origin": None
 }

 @staticmethod
[docs] def valid_kbreak_matchings(start_edges, result_edges):
 """ A staticmethod check implementation that makes sure that degrees of vertices, that are affected by current :class:`KBreak`

 By the notion of k-break, it shall keep the degree of vertices in :class:`bg.breakpoint_graph.BreakpointGraph` the same, after its application.
 By utilizing the Counter class, such check is performed, as the number the vertex is mentioned corresponds to its degree.

 :param start_edges: a list of pairs of vertices, that specifies where edges shall be removed by :class:`KBreak`
 :type start_edges: ``list(tuple(vertex, vertex), ...)``
 :param result_edges: a list of pairs of vertices, that specifies where edges shall be created by :class:`KBreak`
 :type result_edges: ``list(tuple(vertex, vertex), ...)``
 :return: a flag indicating if the degree of vertices are equal in start / result edges, targeted by :class:`KBreak`
 :rtype: ``Boolean``
 """
 start_stats = Counter(vertex for vertex_pair in start_edges for vertex in vertex_pair)
 result_stats = Counter(vertex for vertex_pair in result_edges for vertex in vertex_pair)
 return start_stats == result_stats

 © Copyright 2015, Sergey Aganezov.
 Created using Sphinx 1.3.5.

