
bg Documentation
Release 1.9.0

Sergey Aganezov

Oct 31, 2017

Contents

1 Installation 3

2 Contents: 5
2.1 Contributing . 5
2.2 API documentation . 6

3 Indices and tables 33

Python Module Index 35

i

ii

bg Documentation, Release 1.9.0

BG is a python based package that provides a comprehensive implementation of comparative genomics combinatorial
object named breakpoint graph [1].

Code is written with the philosophy of TDD and requires Python v3.3+ for correct work.

The package is created and maintained by Sergey Aganezov, Ph.D. Candidate at the Department of Mathematics &
Computational Biology institute (CBI), George Washington University (GWU), Washington, DC, USA.

Author is very grateful for thoughtful and dedicated leadership of Dr. Max A. Alekseyev, Associate Professor at
Department of Mathematics & CBI, GWU.

Contents 1

http://genome.cshlp.org/content/early/2009/02/12/gr.082784.108.short
http://home.gwu.edu/~maxal/

bg Documentation, Release 1.9.0

2 Contents

CHAPTER 1

Installation

Package is distributed by pypi online repository of software for the Python programming language.

To install execute the following simple command

>>> pip install bg

3

https://pypi.python.org/pypi

bg Documentation, Release 1.9.0

4 Chapter 1. Installation

CHAPTER 2

Contents:

Contributing

This page will show the basic principals, that are used during the development of this package.

The project is hosted on the github.

Test Driven Development

Whole project is written with a test-driven development paradigm. This is especially important, since this project
provides an implementation of a complex combinatorial object, which must be reliable in use during research projects.

Project uses unittest framework for implementing TDD paradigm.

Issues reporting

Any found bugs, miss-citations, mistakes in documentation, questions, etc. shall be reported to the issue-tracking
system, powered by github.

Code incorporation

There are several rules for new code to be incorporated into this library:

1. All code has to written using the Sphinx style

2. All code must be covered by tests

3. All algorithms and data structures code must have proper citations

5

https://github.com/sergey-aganezov-jr/bg
https://github.com/
https://docs.python.org/3/library/unittest.html
https://github.com/sergey-aganezov-jr/bg/issues
https://pythonhosted.org/an_example_pypi_project/sphinx.html

bg Documentation, Release 1.9.0

API documentation

grimm.py

class bg.grimm.GRIMMReader
Bases: object

Class providing a staticmethod based implementation of reading GRIMM formatted data file-like object and
obtain a bg.breakpoint_graph.BreakpointGraph instance.

There are no private methods implementations for all public methods so inheritance shall be performed with
caution. For now GRIMM format is a bit simplified and straightened from the version provided at http://grimm.
ucsd.edu/GRIMM/grimm_instr.html

Supported GRIMM format:

1.all strings are stripped from both sides for tabs, spaces, etc. Below when said “string”, stripped string is
assumed

2.genome declaration is specified on a string that starts with >

(a)genome name is everything, that follows > sign

3.all input data before the next genome declaration (or EOF) will be attributed to this genome by its genome
name

4.a data string (containing information about gene orders) is a string that is not a genome declaration, com-
ment, empty string

(a)every new genomic fragments (chromosome/scaffold/contig/etc) must be specified on a new string

(b)every data string must contain a $ (for linear case) or @ (for circular case) gene order terminator, that
indicates the end of current genomic fragment

(c)everything after the gene order terminator is ignored

(d)if no gene order before gene order terminator is specified an error would be raised

(e)gene order:

i. gene order is a sequence of space separated block name strings with optional orientation dec-
laration

ii. block can be described by a regular expression ^((-|\+).+$)|([^-\+]+$) and viewed as follows:
if the sign (+ or -) is present as a first character, then it must be followed by a nonempty
block name string if sign is not present, everything is assumed to be a block name, and +
orientation is assigned to it automatically

5.comment string starts with # sign and is ignored during data processing

Main operations:

•GRIMMReader.is_genome_declaration_string(): checks if supplied string after stripping
corresponds to genome declaration

•GRIMMReader.is_comment_string(): checks if supplied string after stripping corresponds to
comment and shall thus be ignored in data processing

•GRIMMReader.parse_genome_declaration_string(): parses a string marked as genome
declaration and returns a corresponding genome name

•GRIMMReader.parse_data_string(): parses a string assumed to contain gene order data, retriev-
ing information about fragment type, gene order, blocks names and their orientation

6 Chapter 2. Contents:

http://grimm.ucsd.edu/GRIMM/grimm_instr.html
http://grimm.ucsd.edu/GRIMM/grimm_instr.html

bg Documentation, Release 1.9.0

•GRIMMReader.get_edges_from_parsed_data(): taking into account fragment type (circu-
lar|linear) and retrieved gene order information translates adjacencies between blocks into edges for addi-
tion to the bg.breakpoint_graph.BreakpointGraph

•GRIMMReader.get_breakpoint_graph(): taking a file-like object transforms supplied gene or-
der data into the language of BreakpointGraph

static _GRIMMReader__assign_vertex_pair(block)
Assigns usual BreakpointGraph type vertices to supplied block.

Vertices are labeled as “block_name” + “h” and “block_name” + “t” according to blocks orientation.

Parameters block ((str, str)) – information about a genomic block to create a pair of
vertices for in a format of (+ | -, block_name)

Returns a pair of vertices labeled according to supplied blocks name (respecting blocks orien-
tation)

Return type (str, str)

static get_breakpoint_graph(stream, merge_edges=True)
Taking a file-like object transforms supplied gene order data into the language of

Parameters

• merge_edges (bool) – a flag that indicates if parallel edges in produced breakpoint
graph shall be merged or not

• stream (iterable ver str) – any iterable object where each iteration produces a str
object

Returns an instance of a BreakpointGraph that contains information about adjacencies in
genome specified in GRIMM formatted input

Return type bg.breakpoint_graph.BreakpointGraph

static get_edges_from_parsed_data(parsed_data)
Taking into account fragment type (circular|linear) and retrieved gene order information translates adja-
cencies between blocks into edges for addition to the bg.breakpoint_graph.BreakpointGraph

In case supplied fragment is linear ($) special artificial vertices (with __infinity suffix) are introduced
to denote fragment extremities

Parameters parsed_data (tuple(str, list((str, str), ...))) – ($ | @, [(+ |
-, block_name),...]) formatted data about fragment type and ordered list of oriented blocks

Returns a list of vertices pairs that would correspond to edges in bg.breakpoint_graph.
BreakpointGraph

Return type list((str, str), ...)

static is_comment_string(data_string)
Checks if supplied string after stripping corresponds to comment and shall thus be ignored in data process-
ing

Parameters data_string (str) – a string to check if it is a pure comment string

Returns a flag indicating if supplied string is a pure comment string

Return type Boolean

static is_genome_declaration_string(data_string)
Checks if supplied string after stripping corresponds to genome declaration

Parameters data_string (str) – a string to check genome name declaration in

2.2. API documentation 7

bg Documentation, Release 1.9.0

Returns a flag indicating if supplied string corresponds to genome name declaration

Return type Boolean

static parse_data_string(data_string)
Parses a string assumed to contain gene order data, retrieving information about fragment type, gene order,
blocks names and their orientation

First checks if gene order termination signs are present. Selects the earliest one. Checks that information
preceding is not empty and contains gene order. Generates results structure by retrieving information about
fragment type, blocks names and orientations.

NOTE: comment signs do not work in data strings. Rather use the fact that after first gene order termina-
tion sign everything is ignored for processing

Parameters data_string (str) – a string to retrieve gene order information from

Returns ($ | @, [(+ | -, block_name),...]) formatted structure corresponding to gene order in
supplied data string and containing fragments type

Return type tuple(str, list((str, str), ...))

static parse_genome_declaration_string(data_string)
Parses a string marked as genome declaration and returns a corresponding bg.genome.
BGGenome

Parameters data_string (str) – a string to retrieve genome name from

Returns genome name from supplied genome declaration string

Return type bg.genome.BGGenome

breakpoint_graph.py

class bg.breakpoint_graph.BreakpointGraph(graph=None)
Bases: object

Class providing implementation of breakpoint graph data structure and most utilized operations on it.

BreakpointGraph anticipates to work with bg.vertex.BGVertex, bg.edge.BGEdge and bg.
multicolor.Multicolor classes instances, but is not limited to them. Extreme caution has to be assumed
when working with non-expected classes.

The engine of graph information storage, low-level algorithms implementation is powered by NetworkX pack-
age MultiGraph data structure. This class provides a smart wrapping around it to perform most useful, from
combinatorial bioinformatics stand point, operations and manipulations.

Class carries following attributes carrying information about graphs structure:

•BreakpointGraph.bg: instance of NetworkX MultiGraph class

Main operations:

•BreakpointGraph.add_bgedge(): adds an instance of bg.edge.BGEdge to the current
BreakpointGraph

•BreakpointGraph.add_edge(): adds a new bg.edge.BGEdge, constructed from a pair
of supplied vertices instances and bg.multicolor.Multicolor object, to the current
BreakpointGraph

•BreakpointGraph.get_vertex_by_name(): returns a bg.vertex.BGVertex instance by
provided name argument

8 Chapter 2. Contents:

bg Documentation, Release 1.9.0

•BreakpointGraph.get_edge_by_two_vertices(): returns a first edge (order is determined
by key NetworkX MultiGraph edge attribute) between two supplied bg.vertex.BGVertex

•BreakpointGraph.get_edges_by_vertex(): returns a generator yielding bg.edge.BGEdge

•BreakpointGraph.edges_between_two_vertices(): returns a generator yielding bg.
edge.BGEdge between two supplied vertices

•BreakpointGraph.connected_components_subgraphs(): returns a generator of
BreakpointGraph object, that represent connected components of a current BreakpointGraph
object, deep copying(by default) all information of current BreakpointGraph

•BreakpointGraph.delete_edge(): deletes and edge from perspective of multi-color substitution
of supplied vertices

•BreakpointGraph.delete_bgedge(): deletes a supplied bg.edge.BGEdge instance from per-
spective of substituting multi-colors.

•BreakpointGraph.split_edge(): deletes a supplied bg.multicolor.Multicolor in-
stance in identifies edge from two supplied vertices.

•BreakpointGraph.split_bgedge(): splits a bg.edge.BGEdge with respect to provided guid-
ance

•BreakpointGraph.split_all_edges_between_two_vertices(): splits all edges between
two supplied vertives with respect to provided guidance.

•BreakpointGraph.split_all_edges(): splits all edge in BreakpointGraph with respect to
provided guidance.

•BreakpointGraph.delete_all_edges_between_two_vertices(): deletes all edges be-
tween two given vertices, by plain deleting them from MultiGraph underling structure.

•BreakpointGraph.merge_all_edges_between_two_vertices(): merges all edge be-
tween two given vertices creating a single edge containing information about multi-colors in respective
edges.

•BreakpointGraph.merge_all_edges(): merges all edges in current BreakpointGraph.

•BreakpointGraph.merge(): merges two BreakpointGraph instances with respect to vertices,
edges, and multicolors.

•BreakpointGraph.update(): updates information in current BreakpointGraph instance by
adding new bg.edge.BGEdge instances form supplied BreakpointGraph.

_BreakpointGraph__add_bgedge(bgedge, merge=True)
Adds supplied bg.edge.BGEdge object to current instance of BreakpointGraph.

Checks that vertices in supplied bg.edge.BGEdge instance actually are present in current
BreakpointGraph if merge option of provided. Otherwise a new edge is added to the current
BreakpointGraph.

Parameters

• bgedge (bg.edge.BGEdge) – instance of bg.edge.BGEdge infromation form
which is to be added to current BreakpointGraph

• merge (Boolean) – a flag to merge supplied information from multi-color perspective
into a first existing edge between two supplied vertices

Returns None, performs inplace changes

_BreakpointGraph__delete_all_bgedges_between_two_vertices(vertex1, vertex2)
Deletes all edges between two supplied vertices

2.2. API documentation 9

bg Documentation, Release 1.9.0

Parameters

• vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first
out of two vertices edges between which are to be deleted

• vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a sec-
ond out of two vertices edges between which are to be deleted

Returns None, performs inplace changes

_BreakpointGraph__delete_bgedge(bgedge, key=None, keep_vertices=False)
Deletes a supplied bg.edge.BGEdge from a perspective of multi-color substitution. If unique
identifier key is not provided, most similar (from perspective of bg.multicolor.Multicolor.
similarity_score() result) edge between respective vertices is chosen for change.

If no unique identifier for edge to be changed is specified, edge to be updated is determined by iterating
over all edges between vertices in supplied bg.edge.BGEdge instance and the edge with most similar-
ity score to supplied one is chosen. Once the edge to be substituted from is determined, substitution if
performed form a perspective of bg.multicolor.Multicolor substitution. If after substitution the
remaining multicolor of respective edge is empty, such edge is deleted form a perspective of MultiGraph
edge deletion.

Parameters

• bgedge (bg.edge.BGEdge) – an edge to be deleted from a perspective of multi-color
substitution

• key – unique identifier of existing edges in current BreakpointGraph instance to be
changed

Type any python object. int is expected.

Returns None, performed inplace changes.

_BreakpointGraph__edges(nbunch=None, keys=False)
Iterates over edges in current BreakpointGraph instance.

Returns a generator over the edges in current BreakpointGraph instance producing instances of bg.
edge.BGEdge instances wrapping around information in underlying MultiGraph object.

Parameters

• nbunch – a vertex to iterate over edges outgoing from, if not provided,iteration over all
edges is performed.

• keys (Boolean) – a flag to indicate if information about unique edge’s ids has to be
returned alongside with edge

Returns generator over edges in current BreakpointGraph

Return type generator

_BreakpointGraph__edges_between_two_vertices(vertex1, vertex2, keys=False)
Iterates over edges between two supplied vertices in current BreakpointGraph

Checks that both supplied vertices are present in current breakpoint graph and then yield all edges that
are located between two supplied vertices. If keys option is specified, then not just edges are yielded, but
rather pairs (edge, edge_id) are yielded

Parameters

• vertex1 (any hashable object, bg.vertex.BGVertex is expected) – a first vertex
out of two, edges of interest are incident to

10 Chapter 2. Contents:

bg Documentation, Release 1.9.0

• vertex2 (any hashable object, bg.vertex.BGVertex is expected) – a second vertex
out of two, edges of interest are incident to

• keys (Boolean) – a flag to indicate if information about unique edge’s ids has to be
returned alongside with edge

Returns generator over edges (tuples edge, edge_id if keys specified) between two sup-
plied vertices in current BreakpointGraph wrapped in bg.vertex.BGVertex

Return type generator

_BreakpointGraph__get_edge_by_two_vertices(vertex1, vertex2, key=None)
Returns an instance of bg.edge.BBGEdge edge between to supplied vertices (if key is supplied, returns
a bg.edge.BBGEdge instance about specified edge).

Checks that both specified vertices are in current BreakpointGraph and then depending on key ar-
gument, creates a new bg.edge.BBGEdge instance and incorporates respective multi-color information
into it.

Parameters

• vertex1 (any hashable object) – first vertex instance out of two in current
BreakpointGraph

• vertex2 (any hashable object) – second vertex instance out of two in current
BreakpointGraph

• key (any python object. None or int is expected) – unique identifier of edge of interested
to be retrieved from current BreakpointGraph

Returns edge between two specified edges respecting a key argument.

Return type bg.edge.BGEdge

_BreakpointGraph__get_edges_by_vertex(vertex, keys=False)
Iterates over edges that are incident to supplied vertex argument in current BreakpointGraph

Checks that the supplied vertex argument exists in underlying MultiGraph object as a vertex, then iterates
over all edges that are incident to it. Wraps each yielded object into bg.edge.BGEdge object.

Parameters

• vertex (any hashable object. bg.vertex.BGVertex object is expected.) – a vertex
object in current BreakpointGraph object

• keys (Boolean) – a flag to indicate if information about unique edge’s ids has to be
returned alongside with edge

Returns generator over edges (tuples edge, edge_id if keys specified) in current
BreakpointGraph wrapped in bg.vertex.BGEVertex

Return type generator

_BreakpointGraph__get_vertex_by_name(vertex_name)
Obtains a vertex object by supplied label

Returns a bg.vertex.BGVertex or its subclass instance

Parameters vertex_name (any hashable python object. str expected.) – a vertex label it is
identified by.

Returns vertex with supplied label if present in current BreakpointGraph, None otherwise

2.2. API documentation 11

bg Documentation, Release 1.9.0

_BreakpointGraph__merge_all_bgedges_between_two_vertices(vertex1, vertex2)
Merges all edge between two supplied vertices into a single edge from a perspective of multi-color merg-
ing.

Parameters

• vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first
out of two vertices edges between which are to be merged together

• vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a sec-
ond out of two vertices edges between which are to be merged together

Returns None, performs inplace changes

_BreakpointGraph__split_all_edges_between_two_vertices(vertex1, vertex2,
guidance=None,
sorted_guidance=False,
ac-
count_for_colors_multiplicity_in_guidance=True)

Splits all edges between two supplied vertices in current BreakpointGraph instance with respect to
the provided guidance.

Iterates over all edges between two supplied vertices and splits each one of them with respect to the
guidance.

Parameters

• vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first
out of two vertices edges between which are to be split

• vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a sec-
ond out of two vertices edges between which are to be split

• guidance (iterable where each entry is iterable with colors
entries) – a guidance for underlying bg.multicolor.Multicolor objects to be
split

Returns None, performs inplace changes

_BreakpointGraph__split_bgedge(bgedge, guidance=None, sorted_guidance=False,
account_for_colors_multiplicity_in_guidance=True,
key=None)

Splits a bg.edge.BGEdge in current BreakpointGraph most similar to supplied one (if no unique
identifier key is provided) with respect to supplied guidance.

If no unique identifier for edge to be changed is specified, edge to be split is determined by iterating over
all edges between vertices in supplied bg.edge.BGEdge instance and the edge with most similarity
score to supplied one is chosen. Once the edge to be split is determined, split if performed form a perspec-
tive of bg.multicolor.Multicolor split. The originally detected edge is deleted, and new edges
containing information about multi-colors after splitting, are added to the current BreakpointGraph.

Parameters

• bgedge (bg.edge.BGEdge) – an edge to find most “similar to” among existing edges
for a split

• guidance (iterable where each entry is iterable with colors
entries) – a guidance for underlying bg.multicolor.Multicolor object to be
split

• duplication_splitting (Boolean) – flag (not currently implemented) for a split-
ting of color-based splitting to take into account multiplicity of respective colors

12 Chapter 2. Contents:

bg Documentation, Release 1.9.0

• key (any python object. int is expected) – unique identifier of edge to be split

Returns None, performs inplace changes

_BreakpointGraph__update(breakpoint_graph, merge_edges=False)
Updates a current :class‘BreakpointGraph‘ object with information from a supplied
:class‘BreakpointGraph‘ instance.

Depending of a merge_edges flag, while updating of a current :class‘BreakpointGraph‘ object is occur-
ing, edges between similar vertices can be merged to already existing ones.

Parameters

• breakpoint_graph (:class`BreakpointGraph`) – a breakpoint graph to ex-
tract information from, which will be then added to the current

• merge_edges (Boolean) – flag to indicate if edges to be added to current
:class‘BreakpointGraph‘ object are to be merged to already existing ones

Returns None, performs inplace changes

__init__(graph=None)
Initialization of a BreakpointGraph object.

Parameters graph (instance of NetworkX MultiGraph is expected.) – is
supplied, BreakpointGraph is initialized with supplied or brand new (empty) instance
of NetworkX MultiGraph.

add_bgedge(bgedge, merge=True)
Adds supplied bg.edge.BGEdge object to current instance of BreakpointGraph.

Proxies a call to BreakpointGraph._BreakpointGraph__add_bgedge() method.

Parameters

• bgedge (bg.edge.BGEdge) – instance of bg.edge.BGEdge infromation form
which is to be added to current BreakpointGraph

• merge (Boolean) – a flag to merge supplied information from multi-color perspective
into a first existing edge between two supplied vertices

Returns None, performs inplace changes

add_edge(vertex1, vertex2, multicolor, merge=True, data=None)
Creates a new bg.edge.BGEdge object from supplied information and adds it to current instance of
BreakpointGraph.

Proxies a call to BreakpointGraph._BreakpointGraph__add_bgedge() method.

Parameters

• vertex1 (any hashable object) – first vertex instance out of two in current
BreakpointGraph

• vertex2 (any hashable object) – second vertex instance out of two in current
BreakpointGraph

• multicolor (bg.multicolor.Multicolor) – an information about multi-colors
of added edge

• merge (Boolean) – a flag to merge supplied information from multi-color perspective
into a first existing edge between two supplied vertices

Returns None, performs inplace changes

2.2. API documentation 13

bg Documentation, Release 1.9.0

apply_kbreak(kbreak, merge=True)
Check validity of supplied k-break and then applies it to current BreakpointGraph

Only bg.kbreak.KBreak (or its heirs) instances are allowed as kbreak argument. KBreak must
correspond to the valid kbreak and, since some changes to its internals might have been done since its
creation, a validity check in terms of starting/resulting edges is performed. All vertices in supplied KBreak
(except for paired infinity vertices) must be present in current BreakpointGraph. For all supplied pairs
of vertices (except for paired infinity vertices), there must be edges between such pairs of vertices, at least
one of which must contain a multicolor matching a multicolor of supplied kbreak.

Edges of specified in kbreak multicolor are deleted between supplied pairs of vertices in kbreak.start_edges
(except for paired infinity vertices). New edges of specified in kbreak multicolor are added between
all pairs of vertices in kbreak.result_edges (except for paired infinity vertices). If after the kbreak ap-
plication there is an infinity vertex, that now has no edges incident to it, it is deleted form the current
BreakpointGraph.

Parameters

• kbreak (bg.kbreak.KBreak) – a k-break to be applied to current BreakpointGraph

• merge (Boolean) – a flag to indicate on how edges, that will be created by a k-break,
will be added to current BreakpointGraph

Returns nothing, performs inplace changes

Return type None

Raises ValueError, TypeError

connected_components_subgraphs(copy=True)
Iterates over connected components in current BreakpointGraph object, and yields new instances of
BreakpointGraph with respective information deep-copied by default (week reference is possible of
specified in method call).

Parameters copy (Boolean) – a flag to signal if graph information has to be deep copied
while producing new BreakpointGraph instances, of just reference to respective data
has to be made.

Returns generator over connected components in current BreakpointGraph wrapping re-
spective connected components into new BreakpointGraph objects.

Return type generator

delete_all_edges_between_two_vertices(vertex1, vertex2)
Deletes all edges between two supplied vertices

Proxies a call to BreakpointGraph._BreakpointGraph__delete_all_bgedges_between_two_vertices()
method.

Parameters

• vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first
out of two vertices edges between which are to be deleted

• vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a sec-
ond out of two vertices edges between which are to be deleted

Returns None, performs inplace changes

delete_bgedge(bgedge, key=None)
Deletes a supplied bg.edge.BGEdge from a perspective of multi-color substitution. If unique
identifier key is not provided, most similar (from perspective of bg.multicolor.Multicolor.
similarity_score() result) edge between respective vertices is chosen for change.

14 Chapter 2. Contents:

bg Documentation, Release 1.9.0

Proxies a call to 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝐺𝑟𝑎𝑝ℎ.𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝐺𝑟𝑎𝑝ℎ
𝑑𝑒𝑙𝑒𝑡𝑒𝑏𝑔𝑒𝑑𝑔𝑒 method.

Parameters

• bgedge (bg.edge.BGEdge) – an edge to be deleted from a perspective of multi-color
substitution

• key – unique identifier of existing edges in current BreakpointGraph instance to be
changed

Type any python object. int is expected.

Returns None, performed inplace changes.

delete_edge(vertex1, vertex2, multicolor, key=None)
Creates a new bg.edge.BGEdge instance from supplied information and deletes it from a perspective
of multi-color substitution. If unique identifier key is not provided, most similar (from perspective of
bg.multicolor.Multicolor.similarity_score() result) edge between respective vertices
is chosen for change.

Proxies a call to 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝐺𝑟𝑎𝑝ℎ.𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝐺𝑟𝑎𝑝ℎ
𝑑𝑒𝑙𝑒𝑡𝑒𝑏𝑔𝑒𝑑𝑔𝑒 method.

Parameters

• vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first
vertex out of two the edge to be deleted is incident to

• vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a sec-
ond vertex out of two the edge to be deleted is incident to

• multicolor (bg.multicolor.Multicolor) – a multi-color to find most suitable
edge to be deleted

• key – unique identifier of existing edges in current BreakpointGraph instance to be
changed

Type any python object. int is expected.

Returns None, performed inplace changes.

edges(nbunch=None, keys=False)
Iterates over edges in current BreakpointGraph instance.

Proxies a call to BreakpointGraph._BreakpointGraph__edges().

Parameters

• nbunch – a vertex to iterate over edges outgoing from, if not provided,iteration over all
edges is performed.

• keys (Boolean) – a flag to indicate if information about unique edge’s ids has to be
returned alongside with edge

Returns generator over edges in current BreakpointGraph

Return type generator

edges_between_two_vertices(vertex1, vertex2, keys=False)
Iterates over edges between two supplied vertices in current BreakpointGraph

Proxies a call to Breakpoint._Breakpoint__edges_between_two_vertices() method.

Parameters

• vertex1 (any hashable object, bg.vertex.BGVertex is expected) – a first vertex
out of two, edges of interest are incident to

2.2. API documentation 15

bg Documentation, Release 1.9.0

• vertex2 (any hashable object, bg.vertex.BGVertex is expected) – a second vertex
out of two, edges of interest are incident to

• keys (Boolean) – a flag to indicate if information about unique edge’s ids has to be
returned alongside with edge

Returns generator over edges (tuples edge, edge_id if keys specified) between two sup-
plied vertices in current BreakpointGraph wrapped in bg.vertex.BGVertex

Return type generator

classmethod from_json(data, genomes_data=None, genomes_deserialization_required=True,
merge=False)

A JSON deserialization operation, that recovers a breakpoint graph from its JSON representation

as information about genomes, that are encoded in breakpoint graph might be available somewhere else,
but not the json object, there is an option to provide it and omit encoding information about genomes.

get_edge_by_two_vertices(vertex1, vertex2, key=None)
Returns an instance of bg.edge.BBGEdge edge between to supplied vertices (if key is supplied, returns
a bg.edge.BBGEdge instance about specified edge).

Proxies a call to BreakpointGraph._BreakpointGraph__get_edge_by_two_vertices().

Parameters

• vertex1 (any hashable object) – first vertex instance out of two in current
BreakpointGraph

• vertex2 (any hashable object) – second vertex instance out of two in current
BreakpointGraph

• key (any python object. None or int is expected) – unique identifier of edge of interested
to be retrieved from current BreakpointGraph

Returns edge between two specified edges respecting a key argument.

Return type bg.edge.BGEdge

get_edges_by_vertex(vertex, keys=False)
Iterates over edges that are incident to supplied vertex argument in current BreakpointGraph

Proxies a call to Breakpoint._Breakpoint__get_edges_by_vertex() method.

Parameters

• vertex (any hashable object. bg.vertex.BGVertex object is expected.) – a vertex
object in current BreakpointGraph object

• keys (Boolean) – a flag to indicate if information about unique edge’s ids has to be
returned alongside with edge

Returns generator over edges (tuples edge, edge_id if keys specified) in current
BreakpointGraph wrapped in bg.vertex.BGEVertex

Return type generator

get_vertex_by_name(vertex_name)
Obtains a vertex object by supplied label

Proxies a call to BreakpointGraph._BreakpointGraph__get_vertex_by_name().

Parameters vertex_name (any hashable python object. str expected.) – a vertex label it is
identified by.

Returns vertex with supplied label if present in current BreakpointGraph, None otherwise

16 Chapter 2. Contents:

bg Documentation, Release 1.9.0

Return type bg.vertices.BGVertex or None

classmethod merge(breakpoint_graph1, breakpoint_graph2, merge_edges=False)
Merges two given instances of :class‘BreakpointGraph‘ into a new one, that gather all available information
from both supplied objects.

Depending of a merge_edges flag, while merging of two dat structures is occurring, edges between
similar vertices can be merged during the creation of a result :class‘BreakpointGraph‘ obejct.

Accounts for subclassing.

Parameters

• breakpoint_graph1 (:class`BreakpointGraph`) – a first out of two
:class‘BreakpointGraph‘ instances to gather information from

• breakpoint_graph2 (:class`BreakpointGraph`) – a second out of two
:class‘BreakpointGraph‘ instances to gather information from

• merge_edges (Boolean) – flag to indicate if edges in a new merged
:class‘BreakpointGraph‘ object has to be merged between same vertices, or if splitting
from supplied graphs shall be preserved.

Returns a new breakpoint graph object that contains all information gathered from both supplied
breakpoint graphs

Return type :class‘BreakpointGraph‘

merge_all_edges()
Merges all edges in a current :class‘BreakpointGraph‘ instance between same pairs of vertices into a single
edge from a perspective of multi-color merging.

Iterates over all possible pairs of vertices in current BreakpointGraph and merges all edges between
respective pairs.

Returns None, performs inplace changes

merge_all_edges_between_two_vertices(vertex1, vertex2)
Merges all edge between two supplied vertices into a single edge from a perspective of multi-color merg-
ing.

Proxies a call to BreakpointGraph._BreakpointGraph__merge_all_bgedges_between_two_vertices()

Parameters

• vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first
out of two vertices edges between which are to be merged together

• vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a sec-
ond out of two vertices edges between which are to be merged together

Returns None, performs inplace changes

nodes()
Iterates over nodes in current BreakpointGraph instance.

Returns generator over nodes (vertices) in current BreakpointGraph instance.

Return type generator

split_all_edges(guidance=None, sorted_guidance=False, ac-
count_for_colors_multiplicity_in_guidance=True)

Splits all edge in current BreakpointGraph instance with respect to the provided guidance.

2.2. API documentation 17

bg Documentation, Release 1.9.0

Iterate over all possible distinct pairs of vertices in current BreakpointGraph instance and splits all
edges between such pairs with respect to provided guidance.

Parameters guidance (iterable where each entry is iterable with
colors entries) – a guidance for underlying bg.multicolor.Multicolor
objects to be split

Returns None, performs inplace changes

split_all_edges_between_two_vertices(vertex1, vertex2, guidance=None,
sorted_guidance=False, ac-
count_for_colors_multiplicity_in_guidance=True)

Splits all edges between two supplied vertices in current BreakpointGraph instance with respect to
the provided guidance.

Proxies a call to BreakpointGraph._BreakpointGraph__split_all_edges_between_two_vertices()
method.

Parameters

• vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first
out of two vertices edges between which are to be split

• vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a sec-
ond out of two vertices edges between which are to be split

• guidance (iterable where each entry is iterable with colors
entries) – a guidance for underlying bg.multicolor.Multicolor objects to be
split

Returns None, performs inplace changes

split_bgedge(bgedge, guidance=None, sorted_guidance=False, ac-
count_for_colors_multiplicity_in_guidance=True, key=None)

Splits a bg.edge.BGEdge in current BreakpointGraph most similar to supplied one (if no unique
identifier key is provided) with respect to supplied guidance.

Proxies a call to BreakpointGraph._BreakpointGraph__split_bgedge() method.

Parameters

• bgedge (bg.edge.BGEdge) – an edge to find most “similar to” among existing edges
for a split

• guidance (iterable where each entry is iterable with colors
entries) – a guidance for underlying bg.multicolor.Multicolor object to be
split

• duplication_splitting (Boolean) – flag (not currently implemented) for a split-
ting of color-based splitting to take into account multiplicity of respective colors

• key (any python object. int is expected) – unique identifier of edge to be split

Returns None, performs inplace changes

split_edge(vertex1, vertex2, multicolor, guidance=None, sorted_guidance=False, ac-
count_for_colors_multiplicity_in_guidance=True, key=None)

Splits an edge in current BreakpointGraph most similar to supplied data (if no unique identifier key
is provided) with respect to supplied guidance.

Proxies a call to BreakpointGraph._BreakpointGraph__split_bgedge() method.

Parameters

18 Chapter 2. Contents:

bg Documentation, Release 1.9.0

• vertex1 (any python hashable object. bg.vertex.BGVertex is expected) – a first
vertex out of two the edge to be split is incident to

• vertex2 (any python hashable object. bg.vertex.BGVertex is expected) – a sec-
ond vertex out of two the edge to be split is incident to

• multicolor (bg.multicolor.Multicolor) – a multi-color to find most suitable
edge to be split

• duplication_splitting (Boolean) – flag (not currently implemented) for a split-
ting of color-based splitting to take into account multiplicity of respective colors

• key (any python object. int is expected) – unique identifier of edge to be split

Returns None, performs inplace changes

to_json(schema_info=True)
JSON serialization method that account for all information-wise important part of breakpoint graph

update(breakpoint_graph, merge_edges=False)
Updates a current :class‘BreakpointGraph‘ object with information from a supplied
:class‘BreakpointGraph‘ instance.

Proxoes a call to BreakpointGraph._BreakpointGraph__update() method.

Parameters

• breakpoint_graph (BreakpointGraph) – a breakpoint graph to extract informa-
tion from, which will be then added to the current

• merge_edges (Boolean) – flag to indicate if edges to be added to current
:class‘BreakpointGraph‘ object are to be merged to already existing ones

Returns None, performs inplace changes

tree.py

class bg.tree.BGTree(newick=None, newick_format=1, dist=1, leaf_wrapper=<class
‘bg.genome.BGGenome’>)

Bases: object

Class that is designed to store information about phylogenetic information and relations between multiple
genomes

Class utilizes a ete3.Tree object as an internal storage This tree can store information about:

•edge lengths

•tree topology

_BGTree__get_node_by_name(name)
Returns a first TreeNode object, which name matches the specified argument

Raises ValueError (if no node with specified name is present in the tree)

_BGTree__get_v_tree_consistent_leaf_based_hashable_multicolors()
Internally used method, that recalculates VTree-consistent sets of leaves in the current tree

_BGTree__has_edge(node1_name, node2_name, account_for_direction=True)
Returns a boolean flag, telling if a tree has an edge with two nodes, specified by their names as arguments

If a account_for_direction is specified as True, the order of specified node names has to relate to parent -
child relation, otherwise both possibilities are checked

2.2. API documentation 19

bg Documentation, Release 1.9.0

_BGTree__has_node(name)
Check is the current Tree has a node, matching by name to the specified argument

_BGTree__update_consistent_multicolors()
Internally used method, that recalculates T-consistent / VT-consistent multicolors for current tree topology

_BGTree__vertex_is_leaf(node_name)
Checks if a node specified by its name as an argument is a leaf in the current Tree

Raises ValueError (if no node with specified name is present in the tree)

add_edge(node1_name, node2_name, edge_length=1)
Adds a new edge to the current tree with specified characteristics

Forbids addition of an edge, if a parent node is not present Forbids addition of an edge, if a child node
already exists

Parameters

• node1_name – name of the parent node, to which an edge shall be added

• node2_name – name of newly added child node

• edge_length – a length of specified edge

Returns nothing, inplace changes

Raises ValueError (if parent node IS NOT present in the tree, or child node IS already present in
the tree)

append(node_name, tree, copy=False)
Append a specified tree (represented by a root TreeNode element) to the node, specified by its name

Parameters copy (Boolean) – a flag denoting if the appended tree has to be added as is, or is
the deepcopy of it has to be used

Raises ValueError (if no node with a specified name, to which the specified tree has to be ap-
pended, is present in the current tree)

bgedge_is_tree_consistent(bgedge)
Checks is supplied BGEdge (from the perspective of its multicolor is T-consistent)

bgedge_is_vtree_consistent(bgedge)
Checks is supplied BGEdge (from the perspective of its multicolor is VT-consistent)

edges()

Returns iterator over edges in current tree.

Return type iterator

get_distance(node1_name, node2_name)
Returns a length of an edge / path, if exists, from the current tree

Parameters

• node1_name – a first node name in current tree

• node2_name – a second node name in current tree

Returns a length of specified by a pair of vertices edge / path

Return type Number

Raises ValueError, if requested a length of an edge, that is not present in current tree

20 Chapter 2. Contents:

bg Documentation, Release 1.9.0

get_node_by_name(name)
Proxies the call to the __get_node_by_name method

get_tree_consistent_multicolors()
Returns a copy of the list of T-consistent multicolors from current tree

get_vtree_consistent_multicolors()
Returns a copy of the list of VT-consistent multicolors from current tree

has_edge(node1_name, node2_name, account_for_direction=True)
Proxies a call to the __has_edge method

has_node(name)
Proxies a call to __has_node method

multicolor_is_tree_consistent(multicolor)
Checks is supplied multicolor is T-consistent

multicolor_is_vtree_consistent(multicolor)
Checks is supplied multicolor is VT-consistent

nodes()
Proxies iteration to the underlying Tree.iter_descendants iterator, but first yielding a root element

Returns iterator over all descendants of a root, starting with a root, in current tree

Return type iterator

root
A property based call for the root pointer in current tree

tree_consistent_multicolors
Property based getter, that checks for consistency in terms of precomputed T-consistent multicolors, re-
computes all consistent multicolors if tree topology has changed and returns internally stored list of T-
consistent multicolors

tree_consistent_multicolors_set
Property based getter, that checks for consistency in terms of precomputed T-consistent multicolors, re-
computes all consistent multicolors if tree topology has changed and returns internally stored set of hash-
able representation of T-consistent multicolors

vtree_consistent_multicolors
Property based getter, that checks for consistency in terms of precomputed VT-consistent multicolors,
recomputes all consistent multicolors if tree topology has changed and returns internally stored list of
VT-consistent multicolors

vtree_consistent_multicolors_set
Property based getter, that checks for consistency in terms of precomputed VT-consistent multicolors,
recomputes all consistent multicolors if tree topology has changed and returns internally stored set of
hashable representation of VT-consistent multicolors

kbreak.py

class bg.kbreak.KBreak(start_edges, result_edges, multicolor, data=None)
Bases: object

A generic object that can represent any k-break (k>= 2)

A notion of k-break arises from the bioinformatics combinatorial object BreakpointGraph and is first mentioned
in http://home.gwu.edu/~maxal/ap_tcs08.pdf A generic k-break operates on k specified edges of spisific multi-

2.2. API documentation 21

http://home.gwu.edu/~maxal/ap_tcs08.pdf

bg Documentation, Release 1.9.0

color and replaces them with another set of k edges with the same multicolor on the same set of vertices in way,
that the degree of vertices is kept intact.

Initialization of the instance of KBreak is performed with a validity check of supplied data, which must comply
with the definition of k-break.

Class carries following attributes carrying information about k-break structure:

•KBreak.start_edges: a list of edges (in terms of paired vertices) that are to be removed by current
KBreak

•KBreak.result_edges: a list of edges (in terms of paired vertices) that are to be created by current
KBreak

•KBreak.multicolor: a bg.multicolor.Multicolor instance, that specifies the multicolor of
edges that are to be removed / created by current KBreak

Main operations:

•KBreak.valid_kbreak_matchings(): a method that checks if provided sets of started / resulted
edges comply with the notions ob k-break definition

__init__(start_edges, result_edges, multicolor, data=None)
Initialization of KBreak object.

The initialization process consists of multiple checks, before any assignment and initialization itself is
performed.

First checks the fact, that information about start / result edges is supplied in form of paired vertices. Then
check is performed to make sure, that degrees of vertices, that current KBreak operates on, is preserved.

Parameters

• start_edges (list(tuple(vertex, vertex), ...)) – a list of pairs of ver-
tices, that specifies where edges shall be removed by current KBreak

• result_edges (list(tuple(vertex, vertex), ...)) – a list of pairs of
vertices, that specifies where edges shall be created by current KBreak

• multicolor (bg.multicolor.Multicolor) – a multicolor, that specifies which
edges between specified pairs of vertices are to be removed / created

Returns a new instance of Kbreak

Return type KBreak

Raises ValueError

static valid_kbreak_matchings(start_edges, result_edges)
A staticmethod check implementation that makes sure that degrees of vertices, that are affected by current
KBreak

By the notion of k-break, it shall keep the degree of vertices in bg.breakpoint_graph.
BreakpointGraph the same, after its application. By utilizing the Counter class, such check is per-
formed, as the number the vertex is mentioned corresponds to its degree.

Parameters

• start_edges (list(tuple(vertex, vertex), ...)) – a list of pairs of ver-
tices, that specifies where edges shall be removed by KBreak

• result_edges (list(tuple(vertex, vertex), ...)) – a list of pairs of
vertices, that specifies where edges shall be created by KBreak

22 Chapter 2. Contents:

bg Documentation, Release 1.9.0

Returns a flag indicating if the degree of vertices are equal in start / result edges, targeted by
KBreak

Return type Boolean

multicolor.py

class bg.multicolor.Multicolor(*args)
Bases: object

Class providing implementation of multi-color notion for edges in bg.breakpoint_graph.
BreakpointGraph.

Multi-color is a specific property of edges in Breakpoint Graph combinatorial object which represents similar
adjacencies between genomic material in multiple genomes.

This class supports the following attributes, that carry information colors and their multiplicity of edges in
bg.breakpoint_graph.BreakpointGraph.

•Multicolor.multicolors: a python Counter object which contains information about colors and
their multiplicity for a given Multicolor instance

•Multicolor.colors: a property attribute providing a set of colors in Multicolor.
multicolors attribute, hiding information about colors multiplicity

Main operations:

•+, -, +=, -=, ==, >, >=, <, <=

•Multicolor.update(): updates information in Multicolor.multicolors attribute of respec-
tive instance

•Multicolor.merge(): creates a new Multicolor object out of a list of provided Multicolor
objects, gathering respective information about colors and their multiplicity

•Multicolor.left_merge(): updates respective Multicolor instance with information from sup-
plied Multicolor object

•Multicolor.delete(): reduces information in respective instance Multicolor.multicolors
attribute by iterating over supplied data

•Multicolor.similarity_score() computes how similar two supplied Multicolor object are

•Multicolor.split_colors() produces several new instances of Multicolor object by splitting
information about colors by using provided guidance iterable set-like object

_Multicolor__delete(multicolor)
Reduces information Multicolor attribute by iterating over supplied colors data.

In case supplied argument is a Multicolor instance, multi-color specific information to de deleted is
set to its Multicolor.multicolors. In other cases multi-color specific information to de deleted is
obtained from iterating over the argument.

Colors and their multiplicity is reduces with a help of - method of python Counter object.

Parameters multicolor (any iterable with colors object as entries or Multicolor) – in-
formation about colors to be deleted from Multicolor object

Returns None, performs inplace changes

static _Multicolor__left_merge(multicolor1, multicolor2)
Updates first supplied Multicolor instance with information from second supplied Multicolor in-
stance.

2.2. API documentation 23

bg Documentation, Release 1.9.0

First supplied instances attribute Multicolor.multicolors is updated with a help of + method of
python Counter object.

Parameters

• multicolor1 (Multicolor) – instance to update information in

• multicolor2 (Multicolor) – instance to use information for update from

Returns updated first supplied Multicolor instance

Return type Multicolor

classmethod _Multicolor__merge(*multicolors)
Produces a new Multicolor object resulting from gathering information from all supplied
Multicolor instances.

New Multicolor is created and its Multicolor.multicolors attribute is updated with similar
attributes of supplied Multicolor objects.

Accounts for subclassing.

Parameters multicolors (Multicolor) – variable number of Multicolor objects

Returns object containing gathered information from all supplied arguments

Return type Multicolor

__add__(other)
Implementation of + operation for Multicolor

Invokes a private Multicolor._Multicolor__merge() method to implement addition of two
Multicolor instances.

Parameters other (Multicolor) – object, whose multi-color information has to be added
to current one

Returns new Multicolor object, colors in which and their multiplicity result from addition
of current Multicolor.multicolors and supplied Multicolor.multicolors

Return type Multicolor

Raises TypeError, if not Multicolor instance is provided

__eq__(other)
Implementation of == operation for Multicolor

Two Multicolor objects are called to be equal if colors that both of them contain and respective col-
ors multiplicity are equal. Multicolor instance never equals to non-Multicolor object. Performs
Multicolor.multicolors comparison with a help of == method of python Counter object.

Parameters other (any python object) – an object to compare to

Returns a flag of equality between current Multicolor instance and supplied object

Return type Boolean

__ge__(other)
Implementation of “>=” operation for Multicolor

One Multicolor instance is said to be “greater than” the other Multicolor instance, if it contains
greater or equal number of colors, as the other Multicolor object does, and multiplicity of all of them is
greater or equal than in the other multicolor. Multicolor instance is never less, than non-Multicolor
object.

Parameters other (any python object) – an object to compare to

24 Chapter 2. Contents:

bg Documentation, Release 1.9.0

Returns a flag if current Multicolor object is greater or equal than supplied object

Return type Boolean

__gt__(other)
Implementation of > operation for Multicolor

One Multicolor instance is said to be “greater than” the other Multicolor instance, if it contains
greater os equal number of colors, as the other Multicolor object does, and multiplicity of all of them
is greater or equal than in the other multicolor, and at least one color has multiplicity greater, than in the
other multicolor. Multicolor instance is never less, than non-Multicolor object.

Parameters other (any python object) – an object to compare to

Returns a flag if current Multicolor object is less than supplied object

Return type Boolean

__iadd__(other)
Implementation of += operation for Multicolor

Invokes a private Multicolor._Multicolor__merge() method to implement addition of two
Multicolor instances.

Parameters other (Multicolor) – object, whose multi-color information has to be added
to current one

Returns new Multicolor object, colors in which and their multiplicity result from addition
of current Multicolor.multicolors and supplied Multicolor.multicolors

Return type Multicolor

Raises TypeError, if not Multicolor instance is provided

__init__(*args)
Initialization of Multicolor object.

Initialization is performed by supplied variable number of colors, that respective Multicolor object
must contain information about Multiplicity of each color is determined by the number of times it occurs
as argument in initialization process.

Parameters args (any hashable python object) – variable number of colors to con-
tain information about

Returns a new instance of Multicolor

Return type Multicolor

__isub__(other)
Implementation of - operation for Multicolor

Updates current Multicolor instance by updating its Multicolor.multicolors attribute infor-
mation by deleting multi-colors in supplied Multicolor.multicolors attribute. Utilizes - method
of python Counter

Parameters other (Multicolor) – object, whose multi-color information to subtract form
current one

Returns updated current Multicolor object

Return type Multicolor

Raises TypeError, if not Multicolor instance is supplied

2.2. API documentation 25

bg Documentation, Release 1.9.0

__le__(other)
Implementation of “<=” operation for Multicolor

One Multicolor instance is said to be “less or equal than” the other Multicolor instance, if it
contains less or equal number colors, as the other Multicolor object does, and multiplicity of all of
them is less or equal than in the other multicolor. Multicolor instance is never less or equal, than
non-Multicolor object.

Parameters other (any python object) – an object to compare to

Returns a flag if current Multicolor object is less or equal than supplied object

Return type Boolean

__lt__(other)
Implementation of < operation for Multicolor

One Multicolor instance is said to be “less than” the other Multicolor instance, if it contains less
or equal number of colors colors, as the other Multicolor object does, and multiplicity of all of them
is less or equal than in the other multicolor, and at least one color has multiplicity less, than in the other
multicolor. Multicolor instance is never less, than non-Multicolor object.

Parameters other (any python object) – an object to compare to

Returns a flag if current Multicolor object is less than supplied object

Return type Boolean

__mul__(other)
Multicolor can be multiplied by a number and it multiplies multiplicity of each present color respectively

Parameters other – an integer multiplier

Returns a new multicolor object resulted from multiplying each colors multiplicity by the mul-
tiplier

__sub__(other)
Implementation of - operation for Multicolor

Creates a new Multicolor instance by cloning current Multicolor object and updating its
Multicolor.multicolors attribute information by deleting multi-colors in supplied Multicolor
object.

Parameters other (Multicolor) – object, whose multi-color information to subtract form
current one

Returns new Multicolor object, colors in which and their multiplicity result from
subtracting of current Multicolor.multicolors and supplied Multicolor.
multicolors attributes.

Return type Multicolor

Raises TypeError, if not Multicolor instance is supplied

colors
Implements an “attribute” like object to access information about colors only, hiding information about
their multiplicity.

Creates a fresh set object every time is accessed.

Returns all colors that current Multicolor object contains information about.

Return type set

26 Chapter 2. Contents:

bg Documentation, Release 1.9.0

delete(multicolor)
Reduces information Multicolor attribute by iterating over supplied colors data.

Works as proxy to respective call to private static method Multicolor._Multicolor__delete()
for purposes of inheritance compatibility.

Parameters multicolor (any iterable with colors object as entries or Multicolor) – in-
formation about colors to be deleted from Multicolor object

Returns None, performs inplace changes

hashable_representation
For a sake of speed check for multicolor presence, each multicolor has a deterministic hashable represen-
tation

intersect(other)
Computes the multiset intersection, between the current Multicolor and the supplied Multicolor

Parameters other – another Multicolor object to compute a multiset intersection with

Returns

Raises TypeError – an intersection can be computed only between two Multicolor objects

classmethod left_merge(multicolor1, multicolor2)
Updates first supplied Multicolor instance with information from second supplied Multicolor in-
stance.

Works as proxy to respective call to private static method Multicolor.
_Multicolor__left_merge() for purposes of inheritance compatibility.

Accounts for subclassing.

Parameters

• multicolor1 (Multicolor) – instance to update information in

• multicolor2 (Multicolor) – instance to use information for update from

Returns updated first supplied Multicolor instance

Return type Multicolor

classmethod merge(*multicolors)
Produces a new Multicolor object resulting from gathering information from all supplied
Multicolor instances.

Works as proxy to respective call to private static method Multicolor._Multicolor__merge()
for purposes of inheritance compatibility.

Parameters multicolors (Multicolor) – variable number of Multicolor objects

Returns object containing gathered information from all supplied arguments

Return type Multicolor

static similarity_score(multicolor1, multicolor2)
Computes how similar two Multicolor objects are from perspective of information, that they contain.

Two multicolors are called to be similar if they contain same colors (at least one). Multiplicity of colors is
taken into account as well.

Parameters

• multicolor1 (Multicolor) – first out of two multi-colors to compute similarity
between

2.2. API documentation 27

bg Documentation, Release 1.9.0

• multicolor2 (Multicolor) – second out of two multi-colors to compute similarity
between

Returns the similarity score between two supplied Multicolor object

Return type int

classmethod split_colors(multicolor, guidance=None, sorted_guidance=False, ac-
count_for_color_multiplicity_in_guidance=True)

Produces several new instances of Multicolor object by splitting information about colors by using
provided guidance iterable set-like object.

Guidance is an iterable type of object where each entry has information about groups of colors that has to
be separated for current Multicolor.multicolors chunk. If no Guidance is provided, single-color
guidance of Multicolor.multicolors is created. Guidance object is first reversed sorted to iterate
over it from larges color set to the smallest one, as small color sets might be subsets of bigger ones, and
shall be utilized only if bigger sets didn’t help in separating.

During the first iteration over the guidance information all subsets of Multicolor.multicolors
that equal to entries of guidance are recorded. During second iteration over remaining of the guidance
information, if colors in Multicolor.multicolors form subsets of guidance entries, such instances
are recorded. After this two iterations, the rest of Multicolor.multicolors is recorded as non-
tackled and is recorded on its own.

Multiplicity of all separated colors in respective chunks is preserved.

Accounts for subclassing.

Parameters

• multicolor (Multicolor) – an instance information about colors in which is to be
split

• guidance (iterable where each entry is iterable with colors
entries) – information how colors have to be split in current Multicolor object

• sorted_guidance – a flag, that indicates is sorting of provided guidance is in order

Returns a list of new Multicolor object colors information in which complies with guidance
information

Return type list of Multicolor objects

update(*args)
Updates information about colors and their multiplicity in respective Multicolor instance.

By iterating over supplied arguments each of which should represent a color object, updates information
about colors and their multiplicity in current Multicolor instance.

Parameters args (any hashable python object) – variable number of colors to add
to currently existing multi colors data

Returns None, performs inplace changes to Multicolor.multicolors attribute

edge.py

class bg.edge.BGEdge(vertex1, vertex2, multicolor, data=None)
Bases: object

A wrapper class for edges in bg.breakpoint_graph.BreakpointGraph

Is not stored on its own in the bg.breakpoint_graph.BreakpointGraph, but is rather can be supplied
to work with and is returned if retrieval is performed. BGEdge represents an undirected edge, thus distinction

28 Chapter 2. Contents:

bg Documentation, Release 1.9.0

between BGEdge.vertex1 and BGEdge.vertex2 attributes is just from identities perspective, not from
the order perspective.

This class supports th following attributes, that cary information about multi-color for this edge, as well as
vertices, its is attached to:

•BGEdge.vertex1: a first vertex to be utilized in bg.breakpoint_graph.BreakpointGraph

•BGEdge.vertex2: a second vertex to be utilized in bg.breakpoint_graph.
BreakpointGraph

Main operations:

•==

•BGEdge.merge(): produces a new BGEdge with multi-color information being merged from them

class BGEdgeJSONSchema(obj=None, extra=None, only=None, exclude=None, prefix=’‘,
strict=False, many=False, skip_missing=False, context=None)

Bases: marshmallow.schema.Schema

Marshmallow powered JSON schema used for serialization / deserialization of edge object

static BGEdge._BGEdge__vertex_json_id(vertex)
A proxy property based access to vertices in current edge

When edge is serialized to JSON object, no explicit object for its vertices are created, but rather they are
referenced by special vertex json_ids.

BGEdge.__eq__(other)
Implementation of == operation for BGEdge

Checks if current BGEdge instance comply in terms of vertices set with the supplied BGEdge, and then checks the equality of BGEdge.multicolor attributes in respective objects.
BGEdge does not equal to non-BGEdge objects

Parameters other (any python object) – object to compare current BGEdge to

Returns flag of equality if current BGEdge object equals to the supplied one

Return type Boolean

BGEdge.__init__(vertex1, vertex2, multicolor, data=None)
Initialization of BGEdge object.

Parameters

• vertex1 (any hashable python object) – vertex the edges is outgoing from

• vertex2 (any hashable python object) – vertex the edges is ingoing to

• multicolor (bg.multicolor.Multicolor) – multicolor that this single edge
shall posses

Returns a new instance of BGEdge

Return type BGEdge

BGEdge.colors_json_ids
A proxy property based access to vertices in current edge

When edge is serialized to JSON object, no explicit object for its multicolor is created, but rather all colors,
taking into account their multiplicity, are referenced by their json_ids.

2.2. API documentation 29

bg Documentation, Release 1.9.0

classmethod BGEdge.from_json(data, json_schema_class=None)
JSON deserialization method that retrieves edge instance from its json representation

If specific json schema is provided, it is utilized, and if not, a class specific is used

BGEdge.json_schema_name
When genome is serialized information about JSON schema of such serialization can be recorded, and this
property provides access to it

classmethod BGEdge.merge(edge1, edge2)
Merges multi-color information from two supplied BGEdge instances into a new BGEdge

Since BGEdge represents an undirected edge, created edge’s vertices are assign according to the order in
first supplied edge.

Accounts for subclassing.

Parameters

• edge1 – first out of two edge information from which is to be merged into a new one

• edge2 – second out of two edge information from which is to be merged into a new one

Returns a new undirected with multi-color information merged from two supplied BGEdge
objects

Raises ValueError

BGEdge.to_json(schema_info=True)
JSON serialization method that accounts for a possibility of field filtration and schema specification

BGEdge.vertex1_json_id
First vertex json id access

BGEdge.vertex2_json_id
Second vertex json id access

vertices.py

class bg.vertices.BGVertex(name)
Bases: object

An base class that represents a vertex (node) with all associated information in a breakpoint graph data structure

While class represents a base inheritance point for specific vertex implementations, it does implement most of
business logic operations, that vertex shall support.

While different type of vertices are to be represented with different python classes, they all have a string repre-
sentation, which mainly relies one the name attribute.

class bg.vertices.BlockVertex(name, mate_vertex=None)
Bases: bg.vertices.BGVertex

This class represents a special type of breakpoint graph vertex that correspond to a generic block extremity
(gene/ synteny block/ etc.)

class BlockVertexJSONSchema(obj=None, extra=None, only=None, exclude=None, prefix=’‘,
strict=False, many=False, skip_missing=False, context=None)

Bases: bg.vertices.BGVertexJSONSchema

JSON schema for this class is redefined to tune the make_object method, that shall return BlockVertex
instance, rather than BGVertex one

30 Chapter 2. Contents:

bg Documentation, Release 1.9.0

classmethod BlockVertex.from_json(data, json_schema_class=None)
This class overwrites the from_json method thus, making sure, that if from_json is called from this class
instance, it will provide its JSON schema as a default one

BlockVertex.is_block_vertex
This class implements a property check for vertex to belong to a class of vertices, that correspond to
extremities of genomic blocks

BlockVertex.is_regular_vertex
This class implements a property check for vertex to belong to class of regular vertices

class bg.vertices.InfinityVertex(name)
Bases: bg.vertices.BGVertex

This class represents a special type of breakpoint graph vertex that correspond to a generic extremity of genomic
fragment (chromosome, scaffold, contig, etc.)

class InfinityVertexJSONSchema(obj=None, extra=None, only=None, exclude=None, pre-
fix=’‘, strict=False, many=False, skip_missing=False, con-
text=None)

Bases: bg.vertices.BGVertexJSONSchema

JSON Schema for this class is redefined to tune the make_object method, that shall return InfinityVertex
instance, rather than a BGVertex one

classmethod InfinityVertex.from_json(data, json_schema_class=None)
This class overwrites the from_json method, thus making sure that if from_json is called from this class
instance, it will provide its JSON schema as a default one

InfinityVertex.is_infinity_vertex
This class implements a property check for vertex to belong to a class of vertices, that correspond to
standard extremities of genomic fragments

InfinityVertex.is_irregular_vertex
This class implements a property check for vertex to belong to a class of vertices, that correspond to
extremities of genomic fragments

InfinityVertex.name
access to classic name attribute is hidden by this property

genome.py

class bg.genome.BGGenome(name)
Bases: object

A class that represent a genome object for the breakpoint graph

For purposes of breakpoint graph no additional information about genome is needed, except its name, that is
used in various algorithmic tasks (multicolor splitting, tree traversing, etc)

class BGGenomeJSONSchema(obj=None, extra=None, only=None, exclude=None, prefix=’‘,
strict=False, many=False, skip_missing=False, context=None)

Bases: marshmallow.schema.Schema

a JSON schema powered by marshmallow library to serialize/deserialize genome object into/from JSON
format

BGGenome.__eq__(other)
Two genomes a called equal if they are of same class and their hash values are equal to each other

2.2. API documentation 31

bg Documentation, Release 1.9.0

BGGenome.__hash__()
Since for breakpoint graph purposes distinction between genomes is made purely by their name, hash value
of genome is proxied to hash value of genomes name

BGGenome.__le__(other)
Genomes are ordered according to lexicographical ordering of their names

BGGenome.__lt__(other)
Genomes are ordered according to lexicographical ordering of their names

classmethod BGGenome.from_json(data, json_schema_class=None)
JSON deserialization method that retrieves a genome instance from its json representation

If specific json schema is provided, it is utilized, and if not, a class specific is used

BGGenome.json_id
A genome is references multiple times, as for example in multicolor object, and such reference is done by
genome unique json id.

BGGenome.json_schema_name
When genome is serialized information about JSON schema of such serialization can be recorded, and this
property provides access to it

BGGenome.to_json(schema_info=True)
JSON serialization method that accounts for a possibility of field filtration and schema specification

distances.py

util.py

32 Chapter 2. Contents:

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

33

bg Documentation, Release 1.9.0

34 Chapter 3. Indices and tables

Python Module Index

b
bg.breakpoint_graph, 8
bg.distances, 32
bg.edge, 28
bg.genome, 31
bg.grimm, 6
bg.kbreak, 21
bg.multicolor, 23
bg.tree, 19
bg.utils, 32
bg.vertices, 30

35

bg Documentation, Release 1.9.0

36 Python Module Index

Index

Symbols
_BGEdge__vertex_json_id() (bg.edge.BGEdge static

method), 29
_BGTree__get_node_by_name() (bg.tree.BGTree

method), 19
_BGTree__get_v_tree_consistent_leaf_based_hashable_multicolors()

(bg.tree.BGTree method), 19
_BGTree__has_edge() (bg.tree.BGTree method), 19
_BGTree__has_node() (bg.tree.BGTree method), 19
_BGTree__update_consistent_multicolors()

(bg.tree.BGTree method), 20
_BGTree__vertex_is_leaf() (bg.tree.BGTree method), 20
_BreakpointGraph__add_bgedge()

(bg.breakpoint_graph.BreakpointGraph
method), 9

_BreakpointGraph__delete_all_bgedges_between_two_vertices()
(bg.breakpoint_graph.BreakpointGraph
method), 9

_BreakpointGraph__delete_bgedge()
(bg.breakpoint_graph.BreakpointGraph
method), 10

_BreakpointGraph__edges()
(bg.breakpoint_graph.BreakpointGraph
method), 10

_BreakpointGraph__edges_between_two_vertices()
(bg.breakpoint_graph.BreakpointGraph
method), 10

_BreakpointGraph__get_edge_by_two_vertices()
(bg.breakpoint_graph.BreakpointGraph
method), 11

_BreakpointGraph__get_edges_by_vertex()
(bg.breakpoint_graph.BreakpointGraph
method), 11

_BreakpointGraph__get_vertex_by_name()
(bg.breakpoint_graph.BreakpointGraph
method), 11

_BreakpointGraph__merge_all_bgedges_between_two_vertices()
(bg.breakpoint_graph.BreakpointGraph
method), 11

_BreakpointGraph__split_all_edges_between_two_vertices()
(bg.breakpoint_graph.BreakpointGraph
method), 12

_BreakpointGraph__split_bgedge()
(bg.breakpoint_graph.BreakpointGraph
method), 12

_BreakpointGraph__update()
(bg.breakpoint_graph.BreakpointGraph
method), 13

_GRIMMReader__assign_vertex_pair()
(bg.grimm.GRIMMReader static method),
7

_Multicolor__delete() (bg.multicolor.Multicolor
method), 23

_Multicolor__left_merge() (bg.multicolor.Multicolor
static method), 23

_Multicolor__merge() (bg.multicolor.Multicolor class
method), 24

__add__() (bg.multicolor.Multicolor method), 24
__eq__() (bg.edge.BGEdge method), 29
__eq__() (bg.genome.BGGenome method), 31
__eq__() (bg.multicolor.Multicolor method), 24
__ge__() (bg.multicolor.Multicolor method), 24
__gt__() (bg.multicolor.Multicolor method), 25
__hash__() (bg.genome.BGGenome method), 31
__iadd__() (bg.multicolor.Multicolor method), 25
__init__() (bg.breakpoint_graph.BreakpointGraph

method), 13
__init__() (bg.edge.BGEdge method), 29
__init__() (bg.kbreak.KBreak method), 22
__init__() (bg.multicolor.Multicolor method), 25
__isub__() (bg.multicolor.Multicolor method), 25
__le__() (bg.genome.BGGenome method), 32
__le__() (bg.multicolor.Multicolor method), 25
__lt__() (bg.genome.BGGenome method), 32
__lt__() (bg.multicolor.Multicolor method), 26
__mul__() (bg.multicolor.Multicolor method), 26
__sub__() (bg.multicolor.Multicolor method), 26

37

bg Documentation, Release 1.9.0

A
add_bgedge() (bg.breakpoint_graph.BreakpointGraph

method), 13
add_edge() (bg.breakpoint_graph.BreakpointGraph

method), 13
add_edge() (bg.tree.BGTree method), 20
append() (bg.tree.BGTree method), 20
apply_kbreak() (bg.breakpoint_graph.BreakpointGraph

method), 13

B
bg.breakpoint_graph (module), 8
bg.distances (module), 32
bg.edge (module), 28
bg.genome (module), 31
bg.grimm (module), 6
bg.kbreak (module), 21
bg.multicolor (module), 23
bg.tree (module), 19
bg.utils (module), 32
bg.vertices (module), 30
BGEdge (class in bg.edge), 28
BGEdge.BGEdgeJSONSchema (class in bg.edge), 29
bgedge_is_tree_consistent() (bg.tree.BGTree method), 20
bgedge_is_vtree_consistent() (bg.tree.BGTree method),

20
BGGenome (class in bg.genome), 31
BGGenome.BGGenomeJSONSchema (class in

bg.genome), 31
BGTree (class in bg.tree), 19
BGVertex (class in bg.vertices), 30
BlockVertex (class in bg.vertices), 30
BlockVertex.BlockVertexJSONSchema (class in

bg.vertices), 30
BreakpointGraph (class in bg.breakpoint_graph), 8

C
colors (bg.multicolor.Multicolor attribute), 26
colors_json_ids (bg.edge.BGEdge attribute), 29
connected_components_subgraphs()

(bg.breakpoint_graph.BreakpointGraph
method), 14

D
delete() (bg.multicolor.Multicolor method), 26
delete_all_edges_between_two_vertices()

(bg.breakpoint_graph.BreakpointGraph
method), 14

delete_bgedge() (bg.breakpoint_graph.BreakpointGraph
method), 14

delete_edge() (bg.breakpoint_graph.BreakpointGraph
method), 15

E
edges() (bg.breakpoint_graph.BreakpointGraph method),

15
edges() (bg.tree.BGTree method), 20
edges_between_two_vertices()

(bg.breakpoint_graph.BreakpointGraph
method), 15

F
from_json() (bg.breakpoint_graph.BreakpointGraph class

method), 16
from_json() (bg.edge.BGEdge class method), 29
from_json() (bg.genome.BGGenome class method), 32
from_json() (bg.vertices.BlockVertex class method), 30
from_json() (bg.vertices.InfinityVertex class method), 31

G
get_breakpoint_graph() (bg.grimm.GRIMMReader static

method), 7
get_distance() (bg.tree.BGTree method), 20
get_edge_by_two_vertices()

(bg.breakpoint_graph.BreakpointGraph
method), 16

get_edges_by_vertex() (bg.breakpoint_graph.BreakpointGraph
method), 16

get_edges_from_parsed_data()
(bg.grimm.GRIMMReader static method),
7

get_node_by_name() (bg.tree.BGTree method), 20
get_tree_consistent_multicolors() (bg.tree.BGTree

method), 21
get_vertex_by_name() (bg.breakpoint_graph.BreakpointGraph

method), 16
get_vtree_consistent_multicolors() (bg.tree.BGTree

method), 21
GRIMMReader (class in bg.grimm), 6

H
has_edge() (bg.tree.BGTree method), 21
has_node() (bg.tree.BGTree method), 21
hashable_representation (bg.multicolor.Multicolor

attribute), 27

I
InfinityVertex (class in bg.vertices), 31
InfinityVertex.InfinityVertexJSONSchema (class in

bg.vertices), 31
intersect() (bg.multicolor.Multicolor method), 27
is_block_vertex (bg.vertices.BlockVertex attribute), 31
is_comment_string() (bg.grimm.GRIMMReader static

method), 7
is_genome_declaration_string()

(bg.grimm.GRIMMReader static method),
7

38 Index

bg Documentation, Release 1.9.0

is_infinity_vertex (bg.vertices.InfinityVertex attribute), 31
is_irregular_vertex (bg.vertices.InfinityVertex attribute),

31
is_regular_vertex (bg.vertices.BlockVertex attribute), 31

J
json_id (bg.genome.BGGenome attribute), 32
json_schema_name (bg.edge.BGEdge attribute), 30
json_schema_name (bg.genome.BGGenome attribute),

32

K
KBreak (class in bg.kbreak), 21

L
left_merge() (bg.multicolor.Multicolor class method), 27

M
merge() (bg.breakpoint_graph.BreakpointGraph class

method), 17
merge() (bg.edge.BGEdge class method), 30
merge() (bg.multicolor.Multicolor class method), 27
merge_all_edges() (bg.breakpoint_graph.BreakpointGraph

method), 17
merge_all_edges_between_two_vertices()

(bg.breakpoint_graph.BreakpointGraph
method), 17

Multicolor (class in bg.multicolor), 23
multicolor_is_tree_consistent() (bg.tree.BGTree method),

21
multicolor_is_vtree_consistent() (bg.tree.BGTree

method), 21

N
name (bg.vertices.InfinityVertex attribute), 31
nodes() (bg.breakpoint_graph.BreakpointGraph method),

17
nodes() (bg.tree.BGTree method), 21

P
parse_data_string() (bg.grimm.GRIMMReader static

method), 8
parse_genome_declaration_string()

(bg.grimm.GRIMMReader static method),
8

R
root (bg.tree.BGTree attribute), 21

S
similarity_score() (bg.multicolor.Multicolor static

method), 27

split_all_edges() (bg.breakpoint_graph.BreakpointGraph
method), 17

split_all_edges_between_two_vertices()
(bg.breakpoint_graph.BreakpointGraph
method), 18

split_bgedge() (bg.breakpoint_graph.BreakpointGraph
method), 18

split_colors() (bg.multicolor.Multicolor class method), 28
split_edge() (bg.breakpoint_graph.BreakpointGraph

method), 18

T
to_json() (bg.breakpoint_graph.BreakpointGraph

method), 19
to_json() (bg.edge.BGEdge method), 30
to_json() (bg.genome.BGGenome method), 32
tree_consistent_multicolors (bg.tree.BGTree attribute),

21
tree_consistent_multicolors_set (bg.tree.BGTree at-

tribute), 21

U
update() (bg.breakpoint_graph.BreakpointGraph

method), 19
update() (bg.multicolor.Multicolor method), 28

V
valid_kbreak_matchings() (bg.kbreak.KBreak static

method), 22
vertex1_json_id (bg.edge.BGEdge attribute), 30
vertex2_json_id (bg.edge.BGEdge attribute), 30
vtree_consistent_multicolors (bg.tree.BGTree attribute),

21
vtree_consistent_multicolors_set (bg.tree.BGTree at-

tribute), 21

Index 39

	Installation
	Contents:
	Contributing
	API documentation

	Indices and tables
	Python Module Index

